REFERENCES
1. Tang W, Zhang X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem Rev 2003;103:3029-70.
2. Demmer CS, Krogsgaard-Larsen N, Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem Rev 2011;111:7981-8006.
3. Duffy MP, Delaunay W, Bouit PA, Hissler M. π-Conjugated phospholes and their incorporation into devices: components with a great deal of potential. Chem Soc Rev 2016;45:5296-310.
4. der Jeught S, Stevens CV. Direct phosphonylation of aromatic azaheterocycles. Chem Rev 2009;109:2672-702.
5. Shao C, Xu W, Li L, Zhang X. Recent advances of transition metal-catalyzed P-C coupling reactions. Chin J Org Chem 2017;37:335.
6. Gao Y, Tang G, Zhao Y. Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations. Phosphorus, Sulfur, and Silicon and the Related Elements 2017;192:589-96.
7. Lan X, Wang N, Xing Y. Recent Advances in Radical Difunctionalization of Simple Alkenes: Recent Advances in Radical Difunctionalization of Simple Alkenes. Eur J Org Chem 2017;2017:5821-51.
8. Gao Y, Tang G, Zhao Y. Recent advances of phosphorus-centered radical promoted difunctionalization of unsaturated carbon-carbon bonds. Chin J Org Chem 2018;38:62.
9. Cai B, Xuan J, Xiao W. Visible light-mediated C P bond formation reactions. Science Bulletin 2019;64:337-50.
10. Chen L, Liu X, Zou Y. Recent advances in the construction of phosphorus-substituted heterocycles, 2009-2019. Adv Synth Catal 2020;362:1724-818.
11. Ung SP, Mechrouk VA, Li C. Shining light on the light-bearing element: a brief review of photomediated C-H phosphorylation reactions. Synthesis 2021;53:1003-22.
12. Leca D, Fensterbank L, Lacôte E, Malacria M. Recent advances in the use of phosphorus-centered radicals in organic chemistry. Chem Soc Rev 2005;34:858-65.
13. Rueping M, Zhu S, Koenigs RM. Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines. Chem Commun (Camb) 2011;47:8679-81.
14. Kingston C, Palkowitz MD, Takahira Y, et al. A survival guide for the "Electro-curious". Acc Chem Res 2020;53:72-83.
15. Budnikova YH, Gryaznova TV, Grinenko VV, Dudkina YB, Khrizanforov MN. Eco-efficient electrocatalytic C-P bond formation. Pure and Applied Chemistry 2017;89:311-30.
16. Bezzenine-Lafollée S, Gil R, Prim D, Hannedouche J. First-row late transition metals for catalytic alkene hydrofunctionalisation: recent advances in C-N, C-O and C-P bond formation. Molecules 2017;22:1901.
17. Yoo W, Kobayashi S. Hydrophosphinylation of unactivated alkenes with secondary phosphine oxides under visible-light photocatalysis. Green Chem 2013;15:1844.
18. Wang N, Ye L, Li Z, et al. Hydrofunctionalization of alkenols triggered by the addition of diverse radicals to unactivated alkenes and subsequent remote hydrogen atom translocation. Org Chem Front 2018;5:2810-4.
19. Yuan Z, Wang S, Li M, et al. Visible light induced hydrophosphinylation of unactivated alkenes catalyzed by salicylaldehyde. Green Chem 2021;23:3600-6.
20. Li YM, Sun M, Wang HL, Tian QP, Yang SD. Direct annulations toward phosphorylated oxindoles: silver-catalyzed carbon-phosphorus functionalization of alkenes. Angew Chem Int Ed Engl 2013;52:3972-6.
21. Li Y, Shen Y, Chang K, Yang S. Metal-free oxidative arylphosphination of activated N-substituted-N-arylacrylamide derivatives using K2S2O8. Tetrahedron 2014;70:1991-6.
22. Zhao J, Li P, Li X, Xia C, Li F. Straightforward synthesis of functionalized chroman-4-ones through cascade radical cyclization-coupling of 2-(allyloxy)arylaldehydes. Chem Commun (Camb) 2016;52:3661-4.
23. Liu Q, Lu W, Xie G, Wang X. Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation-cyclization cascade mediated by K2S2O8. Beilstein J Org Chem 2020;16:1974-82.
24. Zhang HY, Mao LL, Yang B, Yang SD. Copper-catalyzed radical cascade cyclization for the synthesis of phosphorated indolines. Chem Commun (Camb) 2015;51:4101-4.
25. Liang D, Ge D, Lv Y, Huang W, Wang B, Li W. Silver-catalyzed radical arylphosphorylation of unactivated alkenes: synthesis of 3-phosphonoalkyl indolines. J Org Chem 2018;83:4681-91.
26. Liu X, Sun K, Lv Q, et al. Silver-mediated radical phosphorylation/cyclization of N -allylbenzamides to access phosphoryl-substituted dihydroisoquinolones. New J Chem 2019;43:12221-4.
27. Liu X, Sun K, Chen X, et al. Visible-light-promoted transition-metal-free approach toward phosphoryl-substituted dihydroisoquinolones via cascade phosphorylation/cyclization of N-allylbenzamides. Adv Synth Catal 2019;361:3712-7.
28. Liu J, Zhao S, Song W, et al. Silver-catalyzed carbon-phosphorus functionalization for polyheterocycle formation. Adv Synth Catal 2017;359:609-15.
29. Gorre R, Enagandhula D, Balasubramanian S, Akondi SM. Visible-light-driven metal-free aerobic synthesis of highly diastereoselective phosphinoylpyrroloindoles. Org Biomol Chem 2020;18:1354-8.
30. Li Y, Zhu Y, Yang S. Visible-light-induced tandem phosphorylation cyclization of vinyl azides under mild conditions. Org Chem Front 2018;5:822-6.
31. Sun K, Si Y, Chen X, et al. Synthesis of phosphoryl-substituted benzimidazo[2,1-a]isoquinolin-6(5 H)-ones from 2-arylbenzoimidazoles and diarylphosphine oxides. Asian J Org Chem 2019;8:2042-5.
32. Jiang SS, Xiao YT, Wu YC, Luo SZ, Song RJ, Li JH. Manganese(III)-promoted tandem phosphinoylation/cyclization of 2-arylindoles/2-arylbenzimidazoles with disubstituted phosphine oxides. Org Biomol Chem 2020;18:4843-7.
33. Fu Q, Bo ZY, Ye JH, et al. Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nat Commun 2019;10:3592.
34. Jiang Y, Liu J, Fu Q, Yu Y, Yu D. Visible-light-driven phosphonoalkylation of alkenes. Synlett 2021;32:378-82.
35. Chu XQ, Zi Y, Meng H, Xu XP, Ji SJ. Radical phosphinylation of α,α-diaryl allylic alcohols with concomitant 1,2-aryl migration. Chem Commun (Camb) 2014;50:7642-5.
36. Mi X, Wang C, Huang M, Wu Y, Wu Y. Silver-catalyzed carbonphosphonation of α,α-diaryl allylic alcohols: synthesis of β-aryl-γ-ketophosphonates. Org Biomol Chem 2014;12:8394-7.
37. Yin Y, Weng WZ, Sun JG, Zhang B. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement. Org Biomol Chem 2018;16:2356-61.
38. Li C, Qi Z, Yang Q, Qiang X, Yang S. Visible-light-catalyzed phosphonation-annulation: an efficient strategy to synthesize β-Phosphonopyrrolidines and β-phosphonolactones: visible-light-catalyzed phosphonation-annulation: an efficient strategy to synthesize β-phosphonopyrrolidines and β-phosphonolactones†. Chin J Chem 2018;36:1052-8.
39. Wang C, Huang X, Liu X, Gao S, Zhao B, Yang S. Photo-induced phosphorus radical involved semipinacol rearrangement reaction: highly synthesis of γ-oxo-phosphonates. Chinese Chemical Letters 2020;31:677-80.
40. Jin S, Sun S, Yu JT, Cheng J. The silver-promoted phosphonation/alkynylation of alkene proceeding with radical 1,2-alkynyl migration. J Org Chem 2019;84:11177-85.
41. Zhang PZ, Zhang L, Li JA, Shoberu A, Zou JP, Zhang W. Phosphinoyl radical initiated vicinal cyanophosphinoylation of alkenes. Org Lett 2017;19:5537-40.
42. Zhang G, Fu L, Chen P, Zou J, Liu G. Proton-coupled electron transfer enables tandem radical relay for asymmetric copper-catalyzed phosphinoylcyanation of styrenes. Org Lett 2019;21:5015-20.
43. He Y, Won J, Kim J, et al. One-pot bifunctionalization of unactivated alkenes, P(O)-H compounds, and N-methoxypyridinium salts for the construction of β-pyridyl alkylphosphonates. Org Chem Front 2018;5:2595-603.
44. Buquoi JQ, Lear JM, Gu X, Nagib DA. Heteroarene phosphinylalkylation via a catalytic, polarity-reversing radical cascade. ACS Catal 2019;9:5330-5.
45. Lear JM, Buquoi JQ, Gu X, Pan K, Mustafa DN, Nagib DA. Multi-component heteroarene couplings via polarity-reversed radical cascades. Chem Commun (Camb) 2019;55:8820-3.
46. Shen J, Zhang Y, Yu Y, Wang M. Metal-free visible-light-induced photoredox-catalyzed intermolecular pyridylation/phosphinoylation of alkenes. Org Chem Front 2021;8:901-7.
47. Maryanoff BE, Reitz AB. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem Rev 1989;89:863-927.
48. Wei W, Ji JX. Catalytic and direct oxyphosphorylation of alkenes with dioxygen and H-phosphonates leading to β-ketophosphonates. Angew Chem Int Ed Engl 2011;50:9097-9.
49. Zhou M, Zhou Y, Song Q. Cu/Fe-cocatalyzed formation of β-Ketophosphonates by a domino knoevenagel-decarboxylation-oxyphosphorylation sequence from aromatic aldehydes and H-phosphonates. Chemistry 2015;21:10654-9.
50. Chen X, Chen X, Li X, et al. Acetonitrile-dependent oxyphosphorylation: a mild one-pot synthesis of β-ketophosphonates from alkenyl acids or alkenes. Tetrahedron 2017;73:2439-46.
51. Fu Q, Yi D, Zhang Z, et al. Copper-catalyzed aerobic oxidative coupling of ketones with P(O)-H compounds leading to β-ketophosphine oxides. Org Chem Front 2017;4:1385-9.
52. Zhang Z, Yi D, Fu Q, et al. Copper catalyzed one-pot synthesis of β-ketophosphine oxides from ketones and H-phosphine oxides. Tetrahedron Letters 2017;58:2417-20.
53. Liang W, Zhang Z, Yi D, et al. Copper-catalyzed direct oxyphosphorylation of enamides with P(O)-H compounds and dioxygen. Chin J Chem 2017;35:1378-82.
54. Nan G, Yue H. Direct synthesis of β-ketophosphine oxides via copper-catalyzed difunctionalization of alkenes with H-phosphine oxides and dioxygen. Tetrahedron Letters 2018;59:2071-4.
55. Wang H, Fu Q, Zhang Z, Gao M, Ji J, Yi D. Hydrochloric acid-promoted copper/iron-cocatalyzed deesterifica-tive oxyphosphorylation of 2-substituted acrylates with H-phosphine oxides. Chin J Org Chem 2018;38:1977.
56. Feng S, Li J, He F, et al. A copper-catalyzed radical coupling/fragmentation reaction: efficient access to β-oxophosphine oxides. Org Chem Front 2019;6:946-51.
57. Gu J, Cai C. Cu(I)/Fe(III)-Catalyzed C-P cross-coupling of styrenes with H-phosphine oxides: a facile and selective synthesis of alkenylphosphine oxides and β-ketophosphonates. Org Biomol Chem 2017;15:4226-30.
58. Moghaddam FM, Daneshfar M, Azaryan R, Pirat J. Copper ferrite nanoparticles catalyzed formation of β-Ketophosphonates via oxyphosphorylation of styrenes with H-phosphonates: a DFT study on UV-vis absorption spectra. Catalysis Communications 2020;141:106015.
59. Shi Y, Chen R, Guo K, et al. Visible light-promoted metal-free aerobic oxyphosphorylation of olefins: a facile approach to β-ketophosphine oxides. Tetrahedron Letters 2018;59:2062-5.
60. Qian HF, Li CK, Zhou ZH, Tao ZK, Shoberu A, Zou JP. Visible light-mediated photocatalytic metal-free cross-coupling reaction of alkenyl carboxylic acids with diarylphosphine oxides leading to β-ketophosphine oxides. Org Lett 2018;20:5947-51.
61. Jung HI, Kim DY. Visible light-mediated photocatalytic phosphorylation of vinyl azides: A mild synthesis of β-ketophosphine oxides. Synthetic Communications 2020;50:380-7.
62. Li M, Zhang Q, Hu D, et al. Catalyst-free direct difunctionalization of alkenes with H-phosphine oxides and dioxygen: a facile and green approach to β-hydroxyphosphine oxides. Tetrahedron Letters 2016;57:2642-6.
63. Peng P, Lu Q, Peng L, Liu C, Wang G, Lei A. Dioxygen-induced oxidative activation of a P-H bond: radical oxyphosphorylation of alkenes and alkynes toward β-oxy phosphonates. Chem Commun (Camb) 2016;52:12338-41.
64. Yi D, Fu Q, Chen S, et al. Copper-catalyzed direct hydroxyphosphorylation of electron-deficient alkenes with H-phosphine oxides and dioxygen. Tetrahedron Letters 2017;58:2058-61.
65. Chen Y, Chen Y, Lu S, Li Z. Copper-catalyzed three-component phosphorylation-peroxidation of alkenes. Org Chem Front 2018;5:972-6.
66. Shen J, Xiao B, Hou Y, et al. Cobalt(II)-catalyzed bisfunctionalization of alkenes with diarylphosphine oxide and peroxide. Adv Synth Catal 2019;361:5198-209.
67. Zhou SF, Li DP, Liu K, Zou JP, Asekun OT. Direct radical acetoxyphosphorylation of styrenes mediated by manganese(III). J Org Chem 2015;80:1214-20.
68. Ryzhakov D, Jarret M, Baltaze JP, Guillot R, Kouklovsky C, Vincent G. Synthesis of 3,3-spirocyclic 2-phosphonoindolines via a dearomative addition of phosphonyl radicals to indoles. Org Lett 2019;21:4986-90.
69. Yang B, Hou S, Ding S, et al. Cerium(IV)-promoted phosphinoylation-nitratation of alkenes. Adv Synth Catal 2018;360:4470-4.
70. Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. Silver-catalyzed radical phosphonofluorination of unactivated alkenes. J Am Chem Soc 2013;135:14082-5.
71. Li JA, Zhang PZ, Liu K, Shoberu A, Zou JP, Zhang W. Phosphinoyl radical-initiated α,β-aminophosphinoylation of alkenes. Org Lett 2017;19:4704-6.
72. Wang Y, Wang W, Tang R, Liu Z, Tao W, Fang Z. Iron(III)-catalyzed radical α,β-aminophosphinoylation of styrenes with diphenylphosphine oxides and anilines. Org Biomol Chem 2018;16:7782-6.
73. Xu J, Li X, Gao Y, et al. Mn(III)-mediated phosphonation-azidation of alkenes: a facile synthesis of β-azidophosphonates. Chem Commun (Camb) 2015;51:11240-3.
74. Ma X, Chiou M, Ge L, et al. Iron phthalocyanine-catalyzed radical phosphinoylazidation of alkenes: a facile synthesis of β-azido-phosphine oxide with a fast azido transfer step. Chinese Journal of Catalysis 2021;42:1634-40.
75. Tao ZK, Li CK, Zhang PZ, Shoberu A, Zou JP, Zhang W. Phosphinoyl radical-Initiated 1,2-bifunctional thiocyanodiphenylphosphinoylation of alkenes. J Org Chem 2018;83:2418-24.
76. Huang T, Saga Y, Guo H, Yoshimura A, Ogawa A, Han LB. Radical hydrophosphorylation of alkynes with R2P(O)H generating alkenylphosphine oxides: scope and limitations. J Org Chem 2018;83:8743-9.
77. Wang H, Li Y, Tang Z, et al. Z-Selective addition of diaryl phosphine oxides to alkynes via photoredox catalysis. ACS Catal 2018;8:10599-605.
78. Liu WQ, Lei T, Zhou S, et al. Cobaloxime catalysis: selective synthesis of alkenylphosphine oxides under visible light. J Am Chem Soc 2019;141:13941-7.
79. Hou H, Zhou B, Wang J, et al. Stereo- and Regioselective cis-hydrophosphorylation of 1,3-enynes enabled by the visible-light irradiation of NiCl2(PPh3)2. Org Lett 2021;23:2981-7.
80. Zhang P, Zhang L, Gao Y, et al. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides. Chem Commun (Camb) 2015;51:7839-42.
81. Chen X, Li X, Chen XL, et al. A one-pot strategy to synthesize β-ketophosphonates: silver/copper catalyzed direct oxyphosphorylation of alkynes with H-phosphonates and oxygen in the air. Chem Commun (Camb) 2015;51:3846-9.
82. Yi N, Wang R, Zou H, He W, Fu W, He W. Copper/Iron-catalyzed aerobic oxyphosphorylation of terminal alkynes leading to β-ketophosphonates. J Org Chem 2015;80:5023-9.
83. Zhou M, Chen M, Zhou Y, et al. β-ketophosphonate formation via aerobic oxyphosphorylation of alkynes or alkynyl carboxylic acids with H-phosphonates. Org Lett 2015;17:1786-9.
84. Zhong W, Tan T, Shi L, Zeng X. Base-promoted direct oxyphosphorylation of alkynes with h-phosphine oxides in the presence of water. Synlett 2018;29:1379-84.
85. Tao ZK, Li CK, Li JA, Shoberu A, Zhang W, Zou JP. Copper-catalyzed vicinal cyano-, thiocyano-, and chlorophosphorylation of alkynes: a phosphinoyl radical-initiated approach for difunctionalized alkenes. Org Lett 2021;23:4342-7.
86. Zhang P, Gao Y, Zhang L, et al. Copper-Catalyzed Cycloaddition between secondary phosphine oxides and alkynes: synthesis of benzophosphole oxides. Adv Synth Catal 2016;358:138-42.
87. Quint V, Morlet-Savary F, Lohier JF, Lalevée J, Gaumont AC, Lakhdar S. Metal-Free, Visible light-photocatalyzed synthesis of benzo[B]phosphole oxides: synthetic and mechanistic investigations. J Am Chem Soc 2016;138:7436-41.
88. Zhu XT, Zhao Q, Liu F, et al. Silver-mediated radical 5-exo-dig cyclization of 2-alkynylbenzonitriles: synthesis of phosphinylated 1-indenones. Chem Commun (Camb) 2017;53:6828-31.
89. Hou H, Xu Y, Yang H, et al. Visible-light mediated hydrosilylative and hydrophosphorylative cyclizations of enynes and dienes. Org Lett 2020;22:1748-53.
90. Huang WB, Ren FY, Wang MW, Qiu LQ, Chen KH, He LN. Cu(II)-catalyzed phosphonocarboxylative cyclization reaction of propargylic amines and phosphine oxide with CO2. J Org Chem 2020;85:14109-20.
91. Liu XC, Chen XL, Liu Y, et al. Visible-light-induced metal-free synthesis of 2-phosphorylated thioflavones in water. ChemSusChem 2020;13:298-303.
92. Li CX, Tu DS, Yao R, Yan H, Lu CS. Visible-light-induced cascade reaction of isocyanides and N-arylacrylamides with diphenylphosphine oxide via radical C-P and C-C bond formation. Org Lett 2016;18:4928-31.
93. Yang W, Li B, Zhang M, et al. Metal-free photo-induced radical C-P and C-S bond formation for the synthesis of 2-phosphoryl benzothiazoles. Chinese Chemical Letters 2020;31:1313-6.
95. Liao LL, Gui YY, Zhang XB, et al. Phosphorylation of alkenyl and aryl C-O bonds via photoredox/nickel dual catalysis. Org Lett 2017;19:3735-8.
96. Zhu DL, Jiang S, Wu Q, et al. Visible-light-induced nickel-catalyzed P(O)-C(sp2) coupling using thioxanthen-9-one as a photoredox catalysis. Org Lett 2021;23:160-5.
97. Hou H, Zhou B, Wang J, et al. Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chem Commun (Camb) 2021;57:5702-5.
98. Tang L, Wen L, Sun T, et al. Solvent-controlled copper-catalyzed radical decarboxylative coupling for alkenyl C(sp 2 )-P bond formation. Asian J Org Chem 2017;6:1683-92.
99. Xue JF, Zhou SF, Liu YY, Pan X, Zou JP, Asekun OT. Manganese(III)-mediated alkenyl C(sp2)-P bond formation from the reaction of β-nitrostyrenes with dialkyl phosphites. Org Biomol Chem 2015;13:4896-902.
100. Yuan J, Yang L, Mao P, Qu L. Silver-catalyzed synthesis of 2-arylvinylphosphonates by cross-coupling of β-nitrostyrenes with H-phosphites. RSC Adv 2016;6:87058-65.
101. Zhou P, Jiang Y, Zou J, Zhang W. Manganese(III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis 2012;44:1043-50.
102. Yuan J, Li Y, Yang L, et al. Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron 2015;71:8178-86.
103. Yu X, Ge B, Zhang Y, Wang X, Wang D. Silver-Mediated Phosphonylation of C(sp2)-H Bonds with P-H bonds: Direct C-H functionalization of ferrocenyl anilides and dialkyl phosphites under palladium- and copper-free conditions. Asian J Org Chem 2016;5:1253-9.
104. Luo K, Chen YZ, Yang WC, Zhu J, Wu L. Cross-coupling hydrogen evolution by visible light photocatalysis toward C(sp(2))-P FOrmation: metal-free C-H functionalization of thiazole derivatives with diarylphosphine oxides. Org Lett 2016;18:452-5.
105. Qiao H, Sun S, Zhang Y, et al. Merging photoredox catalysis with transition metal catalysis: site-selective C4 or C5-H phosphonation of 8-aminoquinoline amides. Org Chem Front 2017;4:1981-6.
106. Xiong Y, Zhang Y, Qi L, Jiang M, Zhang J, Wang T. Photocatalytic synthesis of diphosphorous quinoline compounds. Asian J Org Chem 2020;9:292-5.
107. Li K, Jiang Y, Xu K, Zeng C, Sun B. Electrochemically dehydrogenative C-H/P-H cross-coupling: effective synthesis of phosphonated quinoxalin-2(1 H)-ones and xanthenes. Green Chem 2019;21:4412-21.
108. Rawat D, Kumar R, Subbarayappa A. Visible-light induced phosphonation of quinoxalines and quinoxalin-2(1 H)-ones under aerobic metal-free conditions. Green Chem 2020;22:6170-5.
109. Singsardar M, Dey A, Sarkar R, Hajra A. Visible-light-induced organophotoredox-catalyzed phosphonylation of 2 H-indazoles with diphenylphosphine oxide. J Org Chem 2018;83:12694-701.
110. Gao F, Sun K, Chen XL, et al. Visible-light-induced phosphorylation of imidazo-fused heterocycles under metal-free conditions. J Org Chem 2020;85:14744-52.
111. Lei T, Liang G, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime catalysis for enamine phosphorylation with hydrogen evolution. Org Lett 2020;22:5385-9.
112. Li L, Huang W, Chen L, Dong J, Ma X, Peng Y. Silver-catalyzed oxidative C(sp3)-P bond formation through C-C and P-H bond cleavage. Angew Chem Int Ed Engl 2017;56:10539-44.
113. Ou Y, Huang Y, Liu Y, et al. Iron-Catalyzed and Air-Mediated C(sp3)-H phosphorylation of 1,3-dicarbonyl compounds involving C-C bond cleavage. Adv Synth Catal 2020;362:5783-7.
114. Zhao X, Huang M, Li Y, Zhang J, Kim JK, Wu Y. Stepwise photosensitized C(sp3)-C(CO) bond cleavage and C-P bond formation of 1,3-dicarbonyls with arylphosphine oxides. Org Chem Front 2019;6:1433-7.
115. Ou Y, Huang Y, He Z, et al. A phosphoryl radical-initiated Atherton-Todd-type reaction under open air. Chem Commun (Camb) 2020;56:1357-60.
116. Zhang H, Zhan Z, Lin Y, et al. Visible light photoredox catalyzed thiophosphate synthesis using methylene blue as a promoter. Org Chem Front 2018;5:1416-22.