REFERENCES
1. Ding X, Zhang YT. Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm. Biomed Eng Lett 2019;9:37-52.
2. Barvik D, Cerny M, Penhaker M, Noury N. Noninvasive continuous blood pressure estimation from pulse transit time: a review of the calibration models. IEEE Rev Biomed Eng 2022;15:138-51.
3. Chan G, Cooper R, Hosanee M, et al. Multi-site photoplethysmography technology for blood pressure assessment: challenges and recommendations. J Clin Med 2019;8:1827.
4. IEEE Standard Association. 1708-2014-IEEE standard for wearable cuffless blood pressure measuring devices. Available from: https://ieeexplore.ieee.org/document/6882122 [Last accessed on 14 May 2024].
5. Stergiou GS, Avolio AP, Palatini P, et al. European society of hypertension recommendations for the validation of cuffless blood pressure measuring devices: European society of hypertension working group on blood pressure monitoring and cardiovascular variability. J Hypertens 2023;41:2074-87.
6. Kim JS, Kim KK, Baek HJ, Park KS. Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiol Meas 2008;29:615-24.
7. Chiang PH, Wong M, Dey S. Using wearables and machine learning to enable personalized lifestyle recommendations to improve blood pressure. IEEE J Transl Eng Health Med 2021;9:2700513.
8. Payne RA, Symeonides CN, Webb DJ, Maxwell SR. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J Appl Physiol 2006;100:136-41.
9. Finnegan E, Davidson S, Harford M, Watkinson P, Tarassenko L, Villarroel M. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Sci Rep 2023;13:986.
10. Nogueira AR, Pugnana A, Ruggieri S, Pedreschi D, Gama J. Methods and tools for causal discovery and causal inference. WIREs Data Min & Knowl 2022;12:e1449.
11. Hasan U, Hossain E, Gani MO. A survey on causal discovery methods for temporal and non-temporal data. Available from: https://arxiv.org/abs/2303.15027v2 [Last accessed on 14 May 2024].
12. Lee HC, Jung CW. Vital Recorder-a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices. Sci Rep 2018;8:1527.
13. Ding XR, Zhang YT, Liu J, Dai WX, Tsang HK. Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans Biomed Eng 2016;63:964-72.
14. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev 2012;8:14-25.
15. Charlton PH, Paliakaitė B, Pilt K, et al. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. Am J Physiol Heart Circ Physiol 2022;322:H493-522.
16. Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005;18:3S-10S.
17. Zanga A, Ozkirimli E, Stella F. A survey on causal discovery: theory and practice. Int J Approx Reason 2022;151:101-29.
19. Spirtes PL, Meek C, Richardson TS. Causal inference in the presence of latent variables and selection bias. Available from: https://arxiv.org/abs/1302.4983 [Last accessed on 14 May 2024].
20. Goudet O, Kalainathan D, Caillou P, Guyon I, Lopez-Paz D, Sebag M. Learning functional causal models with generative neural networks. Available from: https://arxiv.org/abs/1709.05321 [Last accessed on 14 May 2024].
21. Proença J, Muehlsteff J, Aubert X, Carvalho P. Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Annu Int Conf IEEE Eng Med Biol Soc 2010;2010:598-601.
22. Salvi P. Pulse waves: how vascular hemodynamics affects blood pressure. Springer Milan; 2012. p. i-138.
23. Ding X, Yan BP, Zhang YT, Liu J, Zhao N, Tsang HK. Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci Rep 2017;7:11554.
24. Cattivelli FS, Garudadri H. Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In: 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks. IEEE; 2009:114-119.