REFERENCES
1. Bachmann D, Weichert F, Rinkenauer G. Review of three-dimensional human-computer interaction with focus on the leap motion controller. Sensors 2018;18:2194.
2. DAVIS JR, SHACKEL B. Changes in the electro-oculogram potential level. Br J Ophthalmol 1960;44:606-18.
3. Mowrer OH, Ruch TC, Miller NE. The corneo-retinal potential difference as the basis of the galvanometric method of recording eye movements. American Journal of Physiology-Legacy Content 1935;114:423-8.
4. Perez Reynoso FD, Niño Suarez PA, Aviles Sanchez OF, et al. A custom EOG-based hmi using neural network modeling to real-time for the trajectory tracking of a manipulator robot. Front Neurorobot 2020;14:578834.
5. Li Y, He S, Huang Q, Gu Z, Yu ZL. A EOG-based switch and its application for “start/stop” control of a wheelchair. Neurocomputing 2018;275:1350-7.
6. Saravanakumar D, Ramasubba Reddy M. A high performance asynchronous EOG speller system. Biomed Signal Proces 2020;59:101898.
7. Choudhari AM, Porwal P, Jonnalagedda V, Mériaudeau F. An Electrooculography based human machine interface for wheelchair control. Biocybern Biomed Eng 2019;39:673-85.
8. Lv Z, Wang Y, Zhang C, Gao X, Wu X. An ICA-based spatial filtering approach to saccadic EOG signal recognition. Biomed Signal Proces 2018;43:9-17.
9. Ding X, Lv Z. Design and development of an EOG-based simplified Chinese eye-writing system. Biomed Signal Proces 2020;57:101767.
10. Sharma K, Jain N, Pal PK. Detection of eye closing/opening from EOG and its application in robotic arm control. Biocybern Biomed Eng 2020;40:173-86.
11. López A, Fernández M, Rodríguez H, Ferrero F, Postolache O. Development of an EOG-based system to control a serious game. Measurement 2018;127:481-8.
12. Barbara N, Camilleri TA, Camilleri KP. EOG-based eye movement detection and gaze estimation for an asynchronous virtual keyboard. Biomed Signal Proces Control 2019;47:159-67.
13. Ryu J, Lee M, Kim DH. EOG-based eye tracking protocol using baseline drift removal algorithm for long-term eye movement detection. Expert Syst Appl 2019;131:275-87.
14. Deng LY, Hsu CL, Lin TC, Tuan JS, Chang SM. EOG-based human–computer interface system development. Expert Syst Appl 2010;37:3337-43.
15. Postelnicu CC, Girbacia F, Talaba D. EOG-based visual navigation interface development. Expert Syst Appl 2012;39:10857-66.
16. Lledó LD, Úbeda A, Iáñez E, Azorín J. Internet browsing application based on electrooculography for disabled people. Expert Syst Appl 2013;40:2640-8.
17. He S, Li Y. A single-channel EOG-based speller. IEEE Trans Neural Syst Rehabil Eng 2017;25:1978-87.
18. Xiao J, Qu J, Li Y. An electrooculogram-based interaction method and its music-on-demand application in a virtual reality environment. IEEE Access 2019;7:22059-70.
19. Huang Q, He S, Wang Q, et al. An EOG-based human-machine interface for wheelchair control. IEEE Trans Biomed Eng 2018;65:2023-32.
20. Zhang R, He S, Yang X, et al. An EOG-based human-machine interface to control a smart home environment for patients with severe spinal cord injuries. IEEE Trans Biomed Eng 2019;66:89-100.
21. Ouyang R, Lv Z, Wu X, Zhang C, Gao X. Design and implementation of a reading auxiliary apparatus based on electrooculography. IEEE Access 2017;5:3841-7.
22. Lin C-T, King J-T, Bharadwaj P, et al. EOG-Based eye movement classification and application on HCI baseball game. IEEE Access 2019;7:96166–76.
23. Milanizadeh S, Safaie J. EOG-based HCI system for quadcopter navigation. IEEE Trans Instrum Meas 2020;69:8992-9.
24. Lee KR, Chang WD, Kim S, Im CH. Real-time "eye-writing" recognition using electrooculogram. IEEE Trans Neural Syst Rehabil Eng 2017;25:37-48.
25. Barea R, Boquete L, Mazo M, López E. System for assisted mobility using eye movements based on electrooculography. IEEE Trans Neural Syst Rehabil Eng 2002;10:209-18.
26. Ubeda A, Iañez E, Azorin JM. Wireless and portable EOG-based interface for assisting disabled people. IEEE/ASME Trans Mechatron 2011;16:870-3.
27. Iáñez E, Azorin JM, Perez-Vidal C. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface. PLoS One 2013;8:e67099.
28. Barea R, Boquete L, Rodriguez-Ascariz JM, Ortega S, López E. Sensory system for implementing a human-computer interface based on electrooculography. Sensors 2011;11:310-28.
29. Laport F, Iglesia D, Dapena A, Castro PM, Vazquez-Araujo FJ. Proposals and comparisons from one-sensor EEG and EOG human-machine interfaces. Sensors 2021;21:2220.
30. Pérez-Reynoso FD, Rodríguez-Guerrero L, Salgado-Ramírez JC, Ortega-Palacios R. Human-machine interface: multiclass classification by machine learning on 1D EOG signals for the control of an omnidirectional robot. Sensors 2021;21:5882.
31. Fang F, Shinozaki T. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems. PLoS One 2018;13:e0192684.
32. Heo J, Yoon H, Park KS. A novel wearable forehead EOG measurement system for human computer interfaces. Sensors 2017;17:1485.
33. Huang Q, Chen Y, Zhang Z, et al. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries. J Neural Eng 2019;16:026021.
34. Lin CT, Jiang WL, Chen SF, Huang KC, Liao LD. Design of a wearable eye-movement detection system based on electrooculography signals and its experimental validation. Biosensors 2021;11:343.
35. López A, Ferrero F, Yangüela D, Álvarez C, Postolache O. Development of a computer writing system based on EOG. Sensors 2017;17:1505.
36. Chang WD, Cha HS, Kim DY, Kim SH, Im CH. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis. J Neuroeng Rehabil 2017;14:89.
37. Kim DY, Han CH, Im CH. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients. Sci Rep 2018;8:9505.
38. Usakli AB, Gurkan S. Design of a novel efficient human-computer interface: an electrooculagram based virtual keyboard. IEEE Trans Instrum Meas 2010;59:2099-108.
39. Enderle JD. Observations on pilot neurosensory control performance during saccadic eye movements. Aviat Space Environ Med 1988;59:309-13.
40. Enderle J. Eye Movements. In: Akay M, editor. Wiley Encyclopedia of Biomedical Engineering. Wiley; 2006.
41. Ülkütaş HÖ, Yıldız M. Computer based eye-writing system by using EOG. Medical Technologies National Conference (TIPTEKNO); 2015 October 1-4; Bodrum, Turkey.
42. Lopez A, Ferrero FJ, Valledor M, Campo JC, Postolache O. A study on electrode placement in EOG systems for medical applications. 2016 IEEE International symposium on medical measurements and applications (MeMeA); 2016 May 1-5; Benevento, Italy.
43. Pleshkov M, Zaitsev V, Starkov D, Demkin V, Kingma H, van de Berg R. Comparison of EOG and VOG obtained eye movements during horizontal head impulse testing. Front Neurol 2022;13:917413.
44. Champaty B, Jose J, Pal K, Thirugnanam A. Development of EOG based human machine interface control system for motorized wheelchair. AICERA/iCMMD: 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives; 2014 July 24-26; Kerala, India.
45. International Organization for Standardization (ISO). Part 1-11: General requirements for basic safety and essential performance. Available from: http://www.iso.org/iso/catalogue_detail.htm?csnumber=65529[Last accessed on 26 Sep 2023].
46. Bulling A, Herter P, Wirz M, Tröster G. Automatic artefact compensation in EOG signals.Available from: https://www.perceptualui.org/publications/bulling07_eurossc.pdf[Last accessed on 26 Sep 2023]
47. Barbara N, Camilleri TA, Camilleri KP. A comparison of EOG baseline drift mitigation techniques. Biomed Signal Proces 2020;57:101738.
48. Bhatnagar S, Gupta B. Acquisition, processing and applications of EOG signals. Available from: https://ieeexplore.ieee.org/document/10009179/[Last accessed on 26 Sep 2023].
49. Chang WD, Choi JH, Shin J. Recognition of eye-written characters using deep neural network. Applied Sciences 2021;11:11036.
50. Liu F, Shi Y. A study on artificial intelligence IQ and standard intelligent model. arXiv 2015;Online ahead of print:1512.00977.
51. Cudlenco N, Popescu N, Leordeanu M. Reading into the mind’s eye: boosting automatic visual recognition with EEG signals. Neurocomputing 2020;386:281-92.
52. Tang S, Dunnmon JA, Liangqiong Q, Saab KK, Baykaner T, Lee-Messer C, Rubin DL. Modeling multivariate biosignals with graph neural networks and structured state space models. Available from: https://proceedings.mlr.press/v209/tang23a.html[Last accessed on 26 Sep 2023]
53. Gupta SK, Zhang M, Wu CC, Wolfe J, Kreiman G. Visual search asymmetry: deep nets and humans share similar inherent biases. arXiv 2021;Online ahead of print:arXiv:2106.02953.
54. Liu M, Zhu H, Tang J, et al. Overview of a sleep monitoring protocol for a large natural population. Phenomics 2023;3:1-18.
56. Brooke J. Sus: a quick and dirty’usability. Usability evaluation in industry. 1996;189: 189-94. Available from: http://www.tbistafftraining.info/smartphones/documents/b5_during_the_trial_usability_scale_v1_09aug11.pdf[Last accessed on 26 Sep 2023]