REFERENCES

1. Suh, Y. C.; Cho, N. H.; Mun, S. Development of mechanistic cempirical design method for an asphalt pavement rutting model using APT. Constr. Build. Mater. 2011, 25, 1685-90.

2. Zhu, H. R.; Sun, L. Mechanistic rutting prediction using a two-stage viscoelastic viscoplastic damage constitutive model of asphalt mixtures. J. Eng. Mech. 2013, 139, 1577-91.

3. Prez, I.; Gallego, J. Rutting prediction of a granular material for base layers of low-traffic roads. Constr. Build. Mater. 2010, 24, 340-5.

4. Zheng, J.; Lv, S.; Liu, C. Technical system, key scientific problems and technical frontier of long-life pavement. Chin. Sci. Bull. 2020, 65, 3219-27.

5. Wu, W. B.; Xu, Z. H.; Tian, X. G.; Zhang, S. Q. Viscoelastic property of aging asphalt mixture and parameters determination method. In: 2010 International Conference on Measuring Technology and Mechatronics Automation; 2010, pp. 1083-6.

6. Mun, S.; Chehab, G. R.; Kim, Y. R. Determination of time-domain viscoelastic functions using optimized interconversion techniques. Road. Mater. Pavement. Des. 2007, 8, 351-65.

7. Tashman, L.; Masad, E.; Zbib, H.; Little, D.; Kaloush, K. Anisotropic viscoplastic continuum damage model for asphalt mixes. Geotech. Spec. Publ. 2004, 123, 111-25.

8. You, T.; Al-Rub, R. K. A.; Masad, E. A.; Kassem, E.; Little, D. N. Three-dimensional microstructural modeling framework for dense-graded asphalt concrete using a coupled viscoelastic, viscoplastic, and viscodamage model. J. Mater. Civ. Eng. 2013, 26, 607-21.

9. Darabi, M. K.; Al-Rub, R. K. A.; Masad, E. A.; Huang, C. V. Thermodynamic based model for coupling temperature dependent viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures. Int. J. Numer. Anal. Methods. Geomech. 2012, 36, 817-54.

10. Al-Rub, R. K. A.; You, T.; Masad, E. A. Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete. Int. J. Adv. Eng. Sci. Appl. Math. 2011, 3, 14-33.

11. Fares, A.; Zayed, T.; Abdelkhalek, S.; Faris, N.; Muddassir, M. Rutting measurement in asphalt pavements. Automat. Constr. 2024, 161, 105358.

12. Archilla, A. R.; Madanat, S. Development of a pavement rutting model from experimental data. J. Transp. Eng. 2000, 126, 291-9.

13. Kou, B.; Cao, J.; Shi, Z.; Huang, W.; Ma, T.; Gong, Y. Construction of data-driven explicit rutting evolution model for asphalt pavement. Appl. Math. Stat. 2025, 2, 5.

14. Ban, H.; Im, S.; Kim, Y. R. Nonlinear viscoelastic approach to model damage-associated performance behavior of asphaltic mixture and pavement structure. Can. J. Civ. Eng. 2013, 40, 313-23.

15. Zhang, Y.; Luo, X.; Deng, Y.; et al. Evaluation of rutting potential of flexible pavement structures using energy-based pseudo variables. Constr. Build. Mater. 2020, 247, 118391.

16. Gandomi, A. H.; Alavi, A. H.; Mirzahosseini, M. R.; Nejad, F. M. Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J. Mater. Civ. Eng. 2010, 23, 248-63.

17. Abd, D. M.; Ahmed, T. M.; Ahmed, T. Y. Characterization of rutting resistance of warm-modified asphalt mixtures tested in a dynamic shear rheometer. J. Mech. Behav. Mater. 2023, 32, 20220277.

18. Hafeez, I. Rutting prediction model of asphalt concrete mixtures using uniaxial repeated creep test. Kuwait. J. Sci. Eng. 2011, 38, 45-61.

19. Dave, E. V.; Buttlar, W. G.; Paulino, G. H. Asphalt pavement aging and temperature dependent properties through a functionally graded viscoelastic model, Part-Ⅱ: applications; 2009, PP. 53-8.

20. Chvez-Valencia, L. E.; Manzano-Ramírez, A.; Alonso-Guzmán, E.; Contreras-García, M. E. Modelling of the performance of asphalt pavement using response surface methodology the kinetics of the aging. Build. Sci. 2007, 42, 933-9.

21. Petersen, J.; Harnsberger, P. Asphalt aging: dual oxidation mechanism and its interrelationships with asphalt composition and oxidative age hardening. Transp. Res. Rec. J. Trans. Res. Board. 1998, 1638, 47-55.

22. Zhang R. Regional logistics demand analysis based on gray system theory: a case study of Hangzhou city. In: 2010 Third International Conference on Knowledge Discovery and Data Mining. 9-10 January 2010.

23. Song, Y. H.; Nie, D. X. Verhulst model for predicting foundation settlement. Rock. Soil. Mech. 2003, 24, 123-6.

24. Wang, X. D.; Zhou, G. L.; Liu, H. Y.; Qing, X. Key points of RIOHTRACK testing road design and construction. J. Highw. Transp. Res. Dev. 2020, 14, 1-16.

25. Kou, B.; Cao, J. D.; Huang, W.; Ma, T. The rutting model of semi-rigid asphalt pavement based on RIOHTRACK full-scale track. Math. Biosci. Eng. 2023, 20, 8124-45.

26. Kopsinis, Y.; McLaughlin, S. Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE. T. Signal. Proces. 2009, 57, 1351-62.

27. Han, G.; Zhang, J. W.; Zhu, X. Research on denosing of power quality disturbance detection and location based on EEMD adaptive thresholding. Electr. Meas. Instrum. 2014, 51, 45-9.

28. Liu, G.; Chen, L.; Qian, Z.; Zhang, Y.; Ren, H. Rutting prediction models for asphalt pavements with different base types based on riohtrack full-scale track. Constr. Build. Mater. 2021, 305, 124793.

29. Li, F.; Zhang, B.; Verma, S.; et al. Seismic signal denoising using thresholded variational mode decomposition. Explor. Geophys. 2017, 49, 450-61.

30. Yeh, J. R.; Shieh, J. S.; Huang, N. E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adap. Data. Anal. 2010, 2, 135-56.

31. Tikkanen, P. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol. Cybern. 1999, 80, 259-67.

32. Yang, Y.; Li, S.; Li, C.; He, H.; Zhang, Q. Research on ultrasonic signal processing algorithm based on CEEMDAN joint wavelet packet thresholding. Measurement. 2022, 201, 111751.

33. Zhu, G. J.; Wu, S. P.; Liu, R. Study on the fatigue property for aged asphalt mixtures by using four point bending tests. Mater. Sci. Forum. 2009, 614, 289-94.

34. He, X.; Hochstein, D.; Ge, Q.; et al. Accelerated aging of asphalt by UV photo-oxidation considering moisture and condensation effects. J. Mater. Civ. Eng. 2018, 30, 1-12.

35. Wang, Y.; Yan, J.; Huang, W.; Rutkowski, L.; Cao, J. Variable-order fractional derivative rutting depth prediction of asphalt pavement based on the riohtrack full-scale track. Sci. China. Inform. Sci. 2022, 66, 152205.

36. Wang, X. D.; Zhang, L.; Zhou, X. Y.; Xiao, Q.; Shan, L. Y. Research progress of RIOHTrack in China. In: 6th International Conference on Accelerated Pavement Testing (APT), 2020; pp. 21-31.

37. Gao, L.; Dan, H.; Chen, J. Researchon predicting the rutting of asphalt pavement based on a simplified burgers creep model. Math. Probl. Eng. 2017, 2017, 3459704.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/