REFERENCES

1. Li, D.; Yan, Y.; Li, D. Adaptive event-triggered control for wastewater treatment process using self-organizing fuzzy neural network. IEEE. Trans. Autom. Sci. Eng. 2011, 22, 11333-42.

2. Alharbi, M.; Hong, P.; Laleg-Kirati, T. M. Sliding window neural network-based sensing of bacteria in wastewater treatment plants. J. Process. Control. 2022, 110, 35-44.

3. Li, L.; Gu, T.; Pan, H.; Hu, J.; Yu, X. Sensor and actuator fault estimations and self-healing control of discrete-time t-s fuzzy model with double observers and its application to wastewater treatment process. IEEE. Trans. Fuzzy. Syst. 2024, 32, 2428-37.

4. Cao, W.; Yang, Q.; Meng, W.; Xie, S. Data-based robust adaptive dynamic programming for balancing control performance and energy consumption in wastewater treatment process. IEEE. Trans. Ind. Inform. 2023, 20, 6622-30.

5. Santín, I.; Barbu, M.; Pedret, C.; Vilanova, R. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation. Water. Res. 2017, 125, 466-77.

6. Du, P.; Zhong, W.; Peng, X.; Li, L.; Wu, X. Residual-triggered threshold decision and performance self-healing control for wastewater treatment process. Inf. Sci. 2023, 64, 118822.

7. Yu, X.; Shen, Y.; Guo, Z.; et al. Intelligent aeration amount prediction control for wastewater treatment process based on recurrent neural network. J. Franklin. Inst. 2024, 361, 107276.

8. Hvala, A. N.; Kocijan, B. J. Input variable selection using machine learning and global sensitivity methods for the control of sludge bulking in a wastewater treatment plant. Comput. Chem. Eng. 2021, 154, 107493.

9. Asteriadis, I.; Azis, K.; Ntougias, S.; Melidis, P. A control strategy for an intermittently aerated and fed bioreactor to reduce aeration costs: a simulation study. Biochem. Eng. J. 2021, 173, 108081.

10. Floresestrella, R.; Quiroz, G.; Mendezacosta, H. O. H control of anaerobic digester for winery industry wastewater treatment. Ind. Eng. Chem. Res. 2013, 52, 2625-32.

11. Vangsgaard, A. K.; Mauricio, M. I.; Gernaey, K.; Sin, G. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach. Comput. Chem. Eng. 2014, 66, 71-81.

12. Petre, E.; Teanu, D. A multivariable robust-adaptive control strategy for a recycled wastewater treatment bioprocess. Chem. Eng. Sci. 2013, 90, 40-50.

13. Chen, G.; Xia, J.; Park, J. H.; Shen, H.; Zhuang, G. Robust sampled-data control for switched complex dynamical networks with actuators saturation. IEEE. Trans. Cybern. 2022, 52, 10909-23.

14. Mu, C.; Wang, K.; Qiu, T. Dynamic Event-Triggering neural learning control for partially unknown nonlinear systems. IEEE. Trans. Cybern. 2022, 52, 2200-2213.

15. Mohseni, S. S.; Babaeipour, V.; Vali, A. R. Design of sliding mode controller for the optimal control of fed-batch cultivation of recombinant E. coli. Chem. Eng. Sci. 2009, 64, 4433-41.

16. Levant, A. Chattering analysis. IEEE. Trans. Autom. Control. 2010, 55, 1380-89.

17. Liu, C.; Wen, G.; Zhao, Z.; Sedaghati, R. Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain. IEEE. Trans. Cybern. 2021, 51, 2339-46.

18. Rios, H.; Falcon, R.; Gonzalez, O. A.; Dzul, A. E. Continuous sliding-modes control strategies for quad-rotor robust tracking: real-time application. IEEE. Trans. Ind. Electron. 2019, 66, 1264-72.

19. Selisteanu, D.; Petre, E.; Rasvan, V. B. Sliding mode and adaptive sliding-mode control of a class of nonlinear bioprocesses. Int. J. Adapt. Control. Signal. Process. 2007, 21, 795-822.

20. Petre, E.; Teanu, D.; Sendrescu, D. Adaptive and robust-adaptive control strategies for anaerobic wastewater treatment bioprocesse. Chem. Eng. J. 2013, 217, 363-78.

21. Wei, W.; Chen, N.; Zhang, Z.; et al. A scalable-bandwidth extended state observer-based adaptive sliding-mode control for the dissolved oxygen in a wastewater treatment process. IEEE. Trans. Cybern. 2021, 52, 13448-57.

22. Liu, Q.; Jiang, X.; Qi, N.; Li, M. Sliding mode variable structure control for wastewater treatment based on an improved linear extended observer. J. Water. Process. Eng. 2024, 68, 106435.

23. Mateusz, C.; Rafal, L. A robust sliding mode observer for non-linear uncertain biochemical systems. ISA. Trans. 2022, 123, 25-45.

24. Pan, H.; Yu, X.; Hu, J.; et al. A self-healing controller based on sliding-mode control for sensor fault in wastewater treatment processes. IEEE. J. Process. Control. 2023, 127, 102997.

25. Faisal, M.; Muttaqi, K. M.; Sutanto, D.; et al. Control technologies of wastewater treatment plants: The state-of-the-art, current challenges, and future directions. Renew. Sustain. Energy. Rev. 2023, 181, 113324.

26. Fida, T.; Samah, B. A.; Anis, M.; Ridha, B. A. An interval multiobserver for nonlinear systems subject to internal and external disturbances: Real time experimental validation. J. Process. Control. 2022, 116, 199-208.

27. Zúniga, I. T.; Queinnec, I.; Wouwer, A. V. Observer-based output feedback linearizing control strategy for a nitrification–denitrification biofilter. Chem. Eng. J. 2012, 191, 243-55.

28. Gonzalez, J.; Fernandez, G.; Aguilar, R. Sliding mode observer-based control for a class of bioreactors. Chem. Eng. J. 2001, 83, 25-32.

29. Wahab, N. A.; Katebi, R.; Balderud, J. Data-driven adaptive model-based predictive control with application in wastewater systems. IET. Control. Theory. Appl. 2011, 5, 803-12.

30. Samuelsson, P.; Halvarsson, B.; Carlsson, B. Interaction analysis and control structure selection in a wastewater treatment plant model. IEEE. Trans. Control. Syst. Technol. 2005, 13, 955-64.

31. Zhang, S.; Zhou, P.; Xie, Y.; Chai, T. Improved model-free adaptive predictive control method for direct data-driven control of a wastewater treatment process with high performance. J. Process. Control. 2022, 110, 11-23.

32. Li, H.; Yu, J.; Hilton, C. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE. Trans. Ind. Electron. 2013, 60, 3328-38.

33. Wang, D.; Zhao, M.; Ha, M.; Ren, J. Neural optimal tracking control of constrained nonaffine systems with a wastewater treatment application. Neural. Netw. 2021, 143, 121-32.

34. Su, Y.; Xu, L.; Li, D. Adaptive fuzzy control of a class of MIMO nonlinear system with actuator saturation for greenhouse climate control problem. IEEE. Trans. Autom. Sci. Eng. 2016, 13, 772-88.

35. de Canete, J. F.; del Saz-Orozco, P.; Gómez-de Gabriel, J.; et al. Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. Comput. Chem. Eng. 2021, 144, 107146.

36. Lei, Y.; Ding, L.; Zhang, W. Generalization performance of radial basis function networks. IEEE. Trans. Neural. Netw. Learn. Syst. 2015, 26, 551-64.

37. Lin, M.; Luo, F. Adaptive neural control of the dissolved oxygen concentration in WWTPs based on disturbance observer. Neurocomputing. 2016, 185, 133-41.

38. Huang, M.; Wan, J.; Ma, Y.; Wang, Y. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks. Expert. Syst. Appl. 2009, 36, 10428-37.

39. Chen, W.; Chang, N.; Chen, J. Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment. Water. Res. 2003, 37, 95-107.

40. Bououden, S.; Chadli, M.; Karimi, H. R. Control of uncertain highly nonlinear biological process based on Takagi-Sugeno fuzzy models. Signal. Process. 2015, 108, 195-205.

41. Huang, M.; Wan, J.; Hu, K.; Ma, Y.; Wang, Y. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process. J. Ind. Microbiol. Biotechnol. 2013, 40, 1393-401.

42. Ruan, J.; Zhang, C.; Li, Y.; et al. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor. J. Environ. Manag. 2017, 187, 550-59.

43. Xu, B.; Li, Y.; Hou, Z.; Ahn, C. K. Dynamic event-triggered reinforcement learning-based consensus tracking of nonlinear multi-agent systems. IEEE. Trans. Circuits. Syst. I. Regul. Pap. 2023, 70, 2120-32.

44. Xu, B.; Li, Y. Prescribed-time fully distributed Nash equilibrium seeking of nonlinear multi-agent systems over unbalanced digraphs. Automatica. 2024, 169, 111847.

45. Han, H.; Qiao, J. Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process. IEEE. Trans. Ind. Electron. 2014, 61, 1970-82.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/