REFERENCES
1. Rauh, N.; Franke, T.; Krems, J. F. Understanding the impact of electric vehicle driving experience on range anxiety. Hum. Factors. 2014, 57, 177-87.
2. Alcaraz, C.; Lopez, J.; Wolthusen, S. OCPP protocol: security threats and challenges. IEEE. Trans. Smart. Grid. 2017, 8, 2452-59.
3. Alcaraz, C.; Cumplido, J.; Trivino, A. OCPP in the spotlight: threats and countermeasures for electric vehicle charging infrastructures 4.0. Int. J. Inf. Sec. 2023, 22, 1395-421.
4. Kaur, A.; Valizadeh, N.; Nandan, D.; et al. Cybersecurity challenges in the EV charging ecosystem. ACM. Comput. Surv. 2025. DOI: 10.1145/3735662.
5. Coppoletta, G. OCPPStorm: a comprehensive fuzzing tool for OCPP implementations. University of Illinois at Chicago; 2024.
6. Zhang, T.; Mao, S. An introduction to the federated learning standard. Mob. Comput. Commun. 2022, 25, 18-22.
7. Dalamagkas, C.; Radoglou-Grammatikis, P.; Bouzinis, P.; et al. Federated OCPP 1.6 intrusion detection dataset. IEEE DataPort; 2025.
8. Mothukuri, V.; Khare, P.; Parizi, R. M.; et al. Federated-learning-based anomaly detection for IoT security attacks. IEEE. Internet. Things. J. 2022, 9, 2545-54.
9. Rashid, M. M.; Khan, S. U.; Eusufzai, F.; et al. A federated learning-based approach for improving intrusion detection in industrial internet of things networks. Network 2023, 3, 158-79.
10. Idrissi, M. J.; Alami, H.; El Mahdaouy, A.; et al. Fed-ANIDS: federated learning for anomaly-based network intrusion detection systems. Expert. Syst. Appl. 2023, 234, 121000.
11. Karunamurthy, A.; Vijayan, K.; Kshirsagar, P. R.; Tan, K. T. An optimal federated learning-based intrusion detection for IoT environment. Sci. Rep. 2025, 15, 8696.
12. Radoglou-Grammatikis, P.; Bouzinis, P. S.; Makris, I.; et al. AI4FIDS: multimodal federated intrusion detection. IEEE. Trans. Emerging. Top. Comput. 2025, 1-15.
13. Morosan, A. G.; Pop, F. OCPP security - neural network for detecting malicious traffic. In: Proceedings of the International Conference on Research in Adaptive and Convergent Systems; 2017.
14. Kabir, M. E.; Ghafouri, M.; Moussa, B.; Assi, C. A two-stage protection method for detection and mitigation of coordinated EVSE switching attacks. IEEE. Trans. Smart. Grid. 2021, 12, 4377-88.
15. Girdhar, M.; Hong, J.; Yoo, Y.; Song, T. J. Machine learning-enabled cyber attack prediction and mitigation for EV charging stations. arXiv2022.
16. ElKashlan, M.; Elsayed, M. S.; Jurcut, A. D.; Azer, M. A machine learning-based intrusion detection system for IoT electric vehicle charging stations (EVCSs). Electronics 2023, 12, 1044.
17. Rubio, J. E.; Alcaraz, C.; Lopez, J. Addressing security in OCPP: protection against man-in-the-middle attacks. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS); 2018. pp. 1-5.
18. Kim, D. U.; Kim, K. O.; Kang, S. M.; Hong, C. S. DataTransfer PDU-based rollback mechanism for securing OCPP 1.6 against spoofing attacks. In: 2025 27th International Conference on Advanced Communications Technology (ICACT); 2025. pp. 94-8.
19. Benfarhat, I.; Goh, V. T.; Lim Siow, C.; Sheraz, M.; Chee Chuah, T. Temporal convolutional network approach to secure open charge point protocol (OCPP) in electric vehicle charging. IEEE. Access. 2025, 13, 15272-89.
20. Buedi, E. D.; Ghorbani, A. A.; Dadkhah, S.; Ferreira, R. L. Enhancing EV charging station security using a multi-dimensional dataset: CICEVSE2024; 2024.
21. Bala, B.; Behal, S. AI techniques for IoT-based DDoS attack detection: taxonomies, comprehensive review and research challenges. Comput. Sci. Rev. 2024, 52, 100631.
22. Rahman, M. M.; Chayan, M. M. H.; Mehrin, K.; Sultana, A.; Hamed, M. M. Explainable deep learning for cyber attack detection in electric vehicle charging stations. In: Proceedings of the 11th International Conference on Networking, Systems, and Security; 2024. pp. 1-7.
23. Purohit, S.; Govindarasu, M. FL-EVCS: federated learning based anomaly detection for EV charging ecosystem. In: 2024 33rd International Conference on Computer Communications and Networks (ICCCN). IEEE; 2024. pp. 1-9.
24. Engelen, G.; Rimmer, V.; Joosen, W. Troubleshooting an intrusion detection dataset: the CICIDS2017 case study. In: 2021 IEEE Security and Privacy Workshops (SPW); 2021. pp. 7-12.
25. Open Charge Point Protocol 1.6. 2017. Available from: https://openchargealliance.org/protocols/open-charge-point-protocol/#OCPP1.6[Last accessed on 13 Jun 2025].
26. Hoekstra, A.; Bienert, R.; Wargers, A.; Singh, H.; Voskuilen, P. Using OpenADR with OCPP; 2023. Available from: https://openchargealliance.org/wp-content/uploads/2023/11/OCA-Using-OpenADR-with-ocpp.pdf[Last accessed on 13 Jun 2025].
27. Sarieddine, K.; Sayed, M. A.; Jafarigiv, D.; et al. A real-time cosimulation testbed for electric vehicle charging and smart grid security. IEEE. Secur. Priv. 2023, 21, 74-83.
28. Open Charge Point Protocol JSON 1.6. 2015. Available from: https://openchargealliance.org/protocols/open-charge-point-protocol/#OCPP1.6[Last accessed on 13 Jun 2025].
29. Zhou, Y.; Ye, Q.; Lv, J. Communication-efficient federated learning with compensated overlap-FedAvg. IEEE. Trans. Parallel. Distrib. Syst. 2022, 33, 192-205.
30. Li, T.; Sahu, A. K.; Zaheer, M.; et al. Federated optimization in heterogeneous networks. arXiv2018.
32. Li, Q.; Zhaomin, W.; Cai, Y.; et al. FedTree: a federated learning system for trees. In: Song D, Carbin M, Chen T, editors. Proceedings of Machine Learning and Systems; 2023. pp. 89-103. Available from: https://proceedings.mlsys.org/paper_files/paper/2023/file/3430e7055936cb8e26451ed49fce84a6-Paper-mlsys2023.pdf[Last accessed on 13 Jun 2025].