REFERENCES
1. Chiu C. C., Ting C. C. Contrast enhancement algorithm based on gap adjustment for histogram equalization. Sensors. 2016;16:936.
2. Qiao, S.; Li, Q.; Wang, Y. An improved color attenuation priori dehazing algorithm and its hardware implementation. In 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC); 12-14 June 2019; Xi'an, China. pp.1-3.
3. He K., Sun J., Tang X. Single image haze removal using dark channel prior. IEEE. Trans. Pattern. Anal. Mach. Intell. 2011;33:2341-53.
4. Liu Y., Yan Z., Tan J., Li Y. Multi-purpose oriented single nighttime image haze removal based on unified variational Retinex model. IEEE. Trans. Circuits. Syst. Video. Technol. 2023;33:1643-57.
5. Berman D., Treibitz T., Avidan S. Single image dehazing using haze-lines. IEEE. Trans. Pattern. Anal. Mach. Intell. 2020;42:720-34.
6. Li S., Yuan Q., Zhang Y., Lv B., Wei F. Image dehazing algorithm based on deep learning coupled local and global features. Appl. Sci. 2022;12:8552.
7. Ilesanmi A. E., Ilesanmi T. O. Methods for image denoising using convolutional neural network: a review. Complex. Intell. Syst. 2021;7:2179-98.
8. He S., Chen Z., Wang F., Wang M. Integrated image defogging network based on improved atmospheric scattering model and attention feature fusion. Earth. Sci. Inform. 2021;14:2037-48.
9. Li, Z.; Gao, T.; Chen, C.; Wen, Y. Non-uniform dehazing algorithm based on improved ConvNeXt. In Proceedings of the 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT); 29-31 March 2024; Nanjing, China, pp.613-9.
10. Lin C., Rong X., Yu X. MSAFF-net: multiscale attention feature fusion networks for single image dehazing and beyond. IEEE. Trans. Multimedia. 2023;25:3089-100.
11. Song Y., He Z., Qian H., Du X. Vision transformers for single image dehazing. IEEE. Trans. Image. Process. 2023;32:1927-41.
12. Wang K. P., Zang Z. J., Yang Y, Fei S. M., Wei J. Y. Non-homogeneous dehazing algorithm based on fusion of dual attention and transformer. J. Beijing. Univ. Posts. Telecommun. 2024;47:30-7.
13. Wang T., Zhang K., Shao Z., et al. GridFormer: residual dense transformer with grid structure for image restoration in adverse weather conditions. Int. J. Comput. Vision. 2024;23:20.
14. Jiang K., Wang Q., An Z., Wang Z., Zhang C., Lin C. Mutual Retinex: combining transformer and CNN for image enhancement. IEEE. Trans. Emergy. Top. Comput. Intell. 2024;8:2240-52.
15. Zheng L., Li Y., Zhang K., Luo W. T-net: deep stacked scale-iteration network for image dehazing. IEEE. Trans. Multimedia. 2023;25:6794-807.
16. Qiu, Y.; Zhang, K.; Wang, C.; Luo, W.; Li, H.; Jin, Z. MB-TaylorFormer: multi-branch efficient transformer expanded by Taylor formula for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV); 2023, pp. 12802-13. Available from: https://openaccess.thecvf.com/content/ICCV2023/html/Qiu_MB-TaylorFormer_Multi-Branch_Efficient_Transformer_Expanded_by_Taylor_Formula_for_Image_ICCV_2023_paper.html [Last accessed on 18 Mar 2025].
18. Liu, Z.; Lin, Y.; Cao, Y.; et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 10-17 October 2021; Montreal, QC, Canada, pp.10012-22.
19. Chen, D.; He, M.; Fan, Q.; et al. Gated context aggregation network for image dehazing and deraining. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV); 7-11 January 2019; Waikoloa, HI, USA, pp.1375-83.
20. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV); 7-13 December 2015; Santiago, Chile.
21. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer vision - ECCV 2016. Cham: Springer International Publishing; 2016. pp. 694-711.
22. Ancuti, C.; Ancuti, C. O.; Timofte, R.; De Vleeschouwer, C. Ⅰ-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. In: Blanc-talon J, Helbert D, Philips W, Popescu D, Scheunders P, editors. Advanced Concepts for Intelligent Vision Systems. Cham: Springer International Publishing; 2018. pp. 620-31.
23. Ancuti C. O., Ancuti C., Timofte R., De Vleeschouwer C. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images. arXiv. 2018; doi: 10.48550/arXiv.1804.05101.
24. Ancuti, C. O.; Ancuti, C.; Timofte, R. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 14-19 June 2020; Seattle, WA, USA, pp.444-5.
25. Li B., Ren W., Fu D., et al. Benchmarking single image dehazing and beyond. IEEE. Trans. Image. Process. 2018;28:492-505.
26. Qin X., Wang Z., Bai Y., Xie X., Jia H. FFA-net: feature fusion attention network for single image dehazing. AAAI. 2020;34:11908-15.
27. Liu, X.; Ma Y.; Shi, Z.; Chen, J. GridDehazeNet: attention-based multi-scale network for image dehazing. In Proceedings of the Ⅰ 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 27 October 2019-2 November 2019; Seoul, Korea (South), pp.7314-23.
28. Dong, H.; Pan, J.; Xiang, L.; et al. Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 13-19 June 2020; Seattle, WA, USA. pp. 2157-67.