REFERENCES

1. Singh S. Critical reasons for crash investigation in the national motor vehicle crash causation survey. (Traffic safety facts crash•stats. report No. DOT HS 812 506). Washington, DC: National Highway Traffic Safety Administration. 2018. Available from: https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812506. [Last accessed on 12 Feb 2025].

2. Lana I, Del Ser J, Velez M, Vlahogianni EI. Road traffic forecasting: recent advances and new challenges. IEEE Intell Transport Syst Mag. 2018;10:93-109.

3. Crayton TJ, Meier BM. Autonomous vehicles: developing a public health research agenda to frame the future of transportation policy. J Transp Health. 2017;6:245-52.

4. Goldfain B, Drews P, You C, et al. AutoRally: an open platform for aggressive autonomous driving. IEEE Control Syst. 2019;39:26-55.

5. First internationally valid system approval for conditionally automated driving. Mercedes-Benz Group. Available from: https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html. [Last accessed on 12 Feb 2025].

6. Khanum A, Lee C, Yang C. Involvement of deep learning for vision sensor-based autonomous driving control: a review. IEEE Sensors J. 2023;23:15321-41.

7. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. ;86:2278-324.

8. HUBEL DH, WIESEL TN. Shape and arrangement of columns in cat’s striate cortex. J Physiol. 1963;165:559-68.

9. Song JG, Lee JW. CNN-based object detection and distance prediction for autonomous driving using stereo images. Int J Automot Technol. 2023;24:773-86.

10. Lee D, Liu J. End-to-end deep learning of lane detection and path prediction for real-time autonomous driving. SIViP. 2023;17:199-205.

11. Li Q, Wang Y, Wang Y, Zhao H. Hdmapnet: an online HD map construction and evaluation framework. In 2022 International Conference on Robotics and Automation (ICRA); 2022 May 23-27. Philadelphia, PA, USA. IEEE; 2022. pp. 4628-34. Available from: https://ieeexplore.ieee.org/abstract/document/9812383. [Last accessed on 12 Feb 2025]

12. Ghintab S, Hassan M. CNN-based visual localization for autonomous vehicles under different weather conditions. ETJ. 2022;41:1-12.

13. Hoque S, Xu S, Maiti A, Wei Y, Arafat MY. Deep learning for 6D pose estimation of objects - a case study for autonomous driving. Expert Syst Appl. 2023;223:119838.

14. Yang K, Tang X, Qiu S, Jin S, Wei Z, Wang H. Towards robust decision-making for autonomous driving on highway. IEEE Trans Veh Technol. 2023;72:11251-63.

15. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision; 2017. pp. 2961-9.

16. Radwan N, Valada V, Burgard W. Vlocnet++: deep multitask learning for semantic visual localization and odometry. IEEE Robot Autom Lett. 2018;3:4407-14.

17. Chen C, Seff A, Kornhauser A, Xiao J. Deepdriving: learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE international conference on computer vision; 2015. pp. 2722-30.

18. Hu Y, Yang J, Chen L, et al. Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2023. pp. 17853-62. Available from: https://openaccess.thecvf.com/content/CVPR2023/html/Hu_Planning-Oriented_Autonomous_Driving_CVPR_2023_paper.html. [Last accessed on 12 Feb 2025].

19. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. pp. 779-88.

20. Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision - ECCV 2016. Cham: Springer International Publishing; 2016. pp. 21-37.

21. Law H, J. Deng J. CornerNet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision (ECCV); 2018, pp. 734-50.

22. Lin G, Milan A, Shen C, Reid I. RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 1925-34.

23. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137-49.

24. Dai J, Li Y, He K, Sun J. R-FCN: object detection via region-based fully convolutional networks. Adv Neural Inf Process Syst. 2016;29. Available from: https://proceedings.neurips.cc/paper/2016/hash/577ef1154f3240ad5b9b413aa7346a1e. [Last accessed on 12 Feb 2025]

25. Wang R, Wang Z, Xu Z, et al. A real-time object detector for autonomous vehicles based on YOLOv4. Comput Intell Neurosci. 2021;2021:9218137.

26. Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:2481-95.

27. Valada A, Vertens J, Dhall A, Burgard W. Adapnet: adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017 May 29-Jun 3; pp. 4644-51.

28. Guan L, Yuan X. Instance segmentation model evaluation and rapid deployment for autonomous driving using domain differences. IEEE Trans Intell Transport Syst. 2023;24:4050-9.

29. Vora S, Lang AH, Helou B, Beijbom O. PointPainting: sequential fusion for 3d object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2020. pp. 4604-12.

30. Wang C, Ma C, Zhu M, Yang X. PointAugmenting: cross-modal augmentation for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 11794-803. Available from: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_PointAugmenting_Cross-Modal_Augmentation_for_3D_Object_Detection_CVPR_2021_paper.html?utm_campaign=Akira%27s+Machine+Learning+News+++&utm_medium=email&utm_source=Revue+newsletter. [Last accessed on 12 Feb 2025].

31. Yin T, Zhou X, Krähenbühl P. Multimodal virtual point 3d detection. Adv Neural Inf Process Syst. 2021;34:pp.16494-507. Available from: https://proceedings.neurips.cc/paper/2021/hash/895daa408f494ad58006c47a30f51c1f. [Last accessed on 12 Feb 2025]

32. Liu Z, Tang H, Amini A, et al. BEVFusion: multi-task multi-sensor fusion with unified bird’s-eye view representation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023 29 May-2 Jun. London, United Kingdom. IEEE; 2023. pp. 2774-81.

33. Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision; 2021. pp. 10012-22.

34. Kendall A, Grimes M, Cipolla R. PoseNet: a convolutional network for real-time 6-dof camera relocalization. In: Proceedings of the IEEE international conference on computer vision; 2015. pp. 2938-46.

35. Sarlin PE, Debraine F, Dymczyk M, Siegwart R, Cadena C. Leveraging deep visual descriptors for hierarchical efficient localization. In: Conference on Robot Learning; 2018. pp. 456-65. Available from: https://proceedings.mlr.press/v87/sarlin18a.html. [Last accessed on 12 Feb 2025].

36. Charroud A, El Moutaouakil K, Palade V, Yahyaouy A. XDLL: explained deep learning LiDAR-based localization and mapping method for self-driving vehicles. Electronics. 2023;12:567.

37. Thrun S. Robotic mapping: a survey. 2002. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cbe046f24f31aace8b61b36e41392a93225029e0. [Last accessed on 12 Feb 2025].

38. Stojcheski J, Nürnberg T, Ulrich M, Michalke T, Gläser C, Geiger A. Self-supervised occupancy grid map completion for automated driving. In: 2023 IEEE Intelligent Vehicles Symposium (IV); 2023, pp. 1-7.

39. Shalev-Shwartz S, Shammah S, Shashua A. Safe, multi-agent, reinforcement learning for autonomous driving. 2016. Available from: https://arxiv.org/abs/1610.03295. [Last accessed on 12 Feb 2025].

40. Liao B, et al. Maptrv2: an end-to-end framework for online vectorized hd map construction. 2024. Available from: https://arxiv.org/abs/2308.05736. [Last accessed on 18 Feb 2025].

41. Liao B, Chen S, Wang X, et al. Maptr: structured modeling and learning for online vectorized hd map construction. 2022. Available from: https://arxiv.org/abs/2208.14437. [Last accessed on 12 Feb 2025].

42. Varshney KR. Engineering safety in machine learning. In: 2016 Information Theory and Applications Workshop (ITA); 2016 Jan 31-Feb 5. La Jolla, CA, USA. IEEE; 2016. pp. 1-5.

43. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D. Concrete problems in AI safety. 2016. Available from: https://arxiv.org/abs/1606.06565. [Last accessed on 12 Feb 2025].

44. Baheri A. Safe reinforcement learning with mixture density network, with application to autonomous driving. Results Control Optim. 2022;6:100095.

45. Luo Z, Gao L, Xiang H, Li J. Road object detection for HD map: full-element survey, analysis and perspectives. ISPRS JPhotogramm Remote Sens. 2023;197:122-44.

46. Yuan T, Liu Y, Wang Y, Wang Y, Zhao H. StreamMapNet: streaming mapping network for vectorized online HD map construction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2024, pp. 7356-65. Available from: https://openaccess.thecvf.com/content/WACV2024/html/Yuan_StreamMapNet_Streaming_Mapping_Network_for_Vectorized_Online_HD_Map_Construction_WACV_2024_paper.html. [Last accessed on 12 Feb 2025].

47. Liu Y, Yuan T, Wang Y, Wang Y, Zhao H. Vectormapnet: end-to-end vectorized hd map learning. In: International Conference on Machine Learning; 2023. pp. 22352-69. Available from: https://proceedings.mlr.press/v202/liu23ax.html. [Last accessed on 12 Feb 2025].

48. Wang S, Yang D, Wang B, et al. UrbanPose: a new benchmark for VRU pose estimation in urban traffic scenes. In: 2021 IEEE Intelligent Vehicles Symposium (IV); 2021 July 11-17. Nagoya, Japan. IEEE 2021. pp. 1537-44.

49. Shao H, Wang L, Chen R, Li H, Liu Y. Safety-enhanced autonomous driving using interpretable sensor fusion transformer. In: Proceedings of The 6th Conference on Robot Learning; 2023. Available from: https://proceedings.mlr.press/v205/shao23a.html. [Last accessed on 18 Feb 2025].

50. Li Z, Li K, Wang S, et al. Hydra-MDP: end-to-end multimodal planning with multi-target hydra-distillation. Available from: https://arxiv.org/abs/2406.06978. [Last accessed on 18 Feb 2025].

51. R-Car-V3H: SoC optimized for automotive application in stereo front cameras | Renesas. 2022. Available from: https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs/r-car-v3h-system-chip-soc-designed-intelligent-camera-deep-learning-capabilities. [Last accessed on 12 Feb 2025].

52. Caesar H, Bankiti V, Lang AH, et al. nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020. pp. 11621-31.

53. Wilson B, Qi W, Agarwal T, et al. Argoverse 2: next generation datasets for self-driving perception and forecasting. 2023, Available from: https://api.semanticscholar.org/CorpusID:244906596. [Last accessed on 12 Feb 2025].

54. Veiga A, Astakhova LV, Botha A, Herselman M. Defining organisational information security culture-perspectives from academia and industry. Comput Secur. 2020;92:101713.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/