REFERENCES
1. Blanchini F, Miani S. Set-theoretic methods in control, 3th ed. Springer, 2008. Available from: https://link.springer.com/book/10.1007/978-3-319-17933-9[Last accessed on 28 Nov 2024].
2. Castelan EB, Tarbouriech S. Positively invariant polyhedral sets for discrete-time singular systems with additive perturbations. In Proceedings of the 35th IEEE Conference on Decision and Control; 13 December 1996; Kobe, Japan.
4. Kolmanovsky I, Gilbert EG. Theory and computation of disturbance invariant sets for discrete‐time linear systems. Math Probl Eng. 1998;4:317-67.
5. Raković SV, Kerrigan EC, Mayne DQ, Kouramas KI. Optimized robust control invariance for linear discrete-time systems: theoretical foundations. Math Probl Eng. 2007;43:831-41.
6. Wang P, Feng X, Li W. Design of robust positively invariant set for nonholonomic vehicle. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC); 28-30 May 2016; Yinchuan, China.
7. Esterhuizen W, Aschenbruck T, Streif S. On maximal robust positively invariant sets in constrained nonlinear systems. Automatica. 2020;119:109044.
8. Rakovic SV, Kerrigan EC, Kouramas K, Mayne DQ. Invariant approximations of the minimal robust positively invariant set. IEEE Trans Automat Contr. 2005;50:406-10.
9. Trodden P. A one-step approach to computing a polytopic robust positively invariant set. IEEE Trans Automat Contr. 2016;61:4100-5.
10. Xue B, Zhan N. Robust invariant sets computation for discrete-time perturbed nonlinear systems. IEEE Trans Automat Contr. 2022;67:1053-60.
11. Hou ZS, Wang Z. From model-based control to data-driven control: survey, classification and perspective. Inf Sci. 2013;235:3-35.
12. Zhong B, Zamani M, Caccamo M. Synthesizing safety controllers for uncertain linear systems: a direct data-driven approach. In Proceedings of the 35th IEEE Conference on Decision and Control; 23-25 August 2020; Trieste, Italy.
13. Bisoffi A, De Persis C, Tesi P. Data-based guarantees of set invariance properties. IFAC-PapersOnLine. 2020;53:3953-8.
14. Mejari M, Gupta A. Direct data-driven computation of polytopic robust control invariant sets and state-feedback controllers. In Proceedings of the 62nd IEEE Conf. on Decision and Control (CDC); 13-15 December 2023; Singapore, Singapore.
15. Scherer CW. A full block S-procedure with applications. In Proceedings of the 36th IEEE Conf. on Decision and Control; 12 December 1997; San Diego, CA, USA.
18. Willems JC, Markovsky I, Rapisarda P, De Moor BLM. A note on persistency of excitation. Syst Control Lett. 2005;54:325-9.
19. Gupta A, Köroğlu H, Falcone P. Computation of robust control invariant sets with predefined complexity for uncertain systems. Intl J Robust Nonlinear. 2021;31:1674-88.
20. Vandenberghe L, Boyd S, Wu SP. Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl. 1998;19:499-533.
21. Gupta A, Köroğlu H, Falcone P. Restricted-complexity characterization of control-invariant domains with application to lateral vehicle dynamics control. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC); 12-15 December 2017; Melbourne, VIC, Australia.
22. Gupta A, Köroğlu H, Falcone P. Computation of low-complexity control-invariant sets for systems with uncertain parameter dependence. Automatica. 2019;101:330-7.
23. CVX: matlab software for disciplined convex programming; 2020. Available from: http://cvxr.com/cvx[Last accessed on 28 Nov 2024].