REFERENCES
1. Na Z, Liu Y, Shi J, Liu C, Gao Z. UAV-supported clustered NOMA for 6G-enabled internet of things: trajectory planning and resource allocation. IEEE Int Things J 2021;8:15041-8.
2. Hua B, Ni H, Zhu Q, et al. Channel modeling for UAV-to-ground communications with posture variation and fuselage scattering effect. IEEE Trans Commun 2023;71:3103-16.
3. Mao K, Zhu Q, Qiu Y, et al. A UAV-aided real-time channel sounder for highly dynamic nonstationary A2G scenarios. IEEE Trans Instrum Meas 2023;72:6504515.
4. Xiong B, Zhang Z, Jiang H, Zhang J, Wu L, Dang J. A 3D non-stationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-ground mmWave communications. IEEE Trans Wireless Commun 2022;21:5658-72.
5. Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag 2011;49:101-7.
6. Zhao X, Du F, Geng S, et al. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework. IEEE J Sel Areas Commun 2020;38:1945-54.
7. Alkhateeb A, El Ayach O, Leus G, Heath RW. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process 2014;8:831-46.
8. Liu X, Wang J, Zhao N, et al. Placement and power allocation for NOMA-UAV networks. IEEE Wireless Commun Lett 2019;8:965-8.
9. Phillips C, Sicker D, Grunwald D. A survey of wireless path loss prediction and coverage mapping methods. IEEE Commun Surv Tutor 2013;15:255-70.
10. Ayadi M, Ben Zineb A, Tabbane S. A UHF path loss model using learning machine for heterogeneous networks. IEEE Trans Antennas Propag 2017;65:3675-83.
11. Mao K, Zhu Q, Duan F, et al. A2G channel measurement and characterization via TNN for UAV multi-scenario communications. In: GLOBECOM 2022 - 2022 IEEE global communications conference; 2022. pp. 4461-6.
12. Sarkar TK, Ji Z, Kim K, Medouri A, Salazar-Palma M. A survey of various propagation models for mobile communication. IEEE Antennas Propag Mag 2003;45:51-82.
13. Mao K, Zhu Q, Wang CX, Ye X, Gomez-Ponce J, et al. A survey on channel sounding technologies and measurements for UAV-assisted communications. IEEE Trans Instrum Meas 2024;73:8004624.
14. He D, Ai B, Guan K, Wang L, Zhong Z, Kurner T. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial. IEEE Commun Surv Tutor 2019;21:10-27.
15. Zhu Q, Mao K, Song M, et al. Map-based channel modeling and generation for U2V mmWave communication. IEEE Trans Veh Technol 2022;71:8004-15.
16. Hossain F, Geok TK, Rahman TA, et al. A smart 3D RT method: indoor radio wave propagation modelling at 28 GHz. Symmetry 2019;11:510.
17. Cui Z, Guan K, Oestges C, Briso-Rodríguez C, Ai B, Zhong Z. Cluster-based characterization and modeling for UAV air-to-ground time-varying channels. IEEE Trans Veh Technol 2022;71:6872-83.
18. Lyu Y, Wang W, Chen P. Fixed-wing UAV based air-to-ground channel measurement and modeling at 2.7GHz in rural environment. IEEE Trans Antennas Propag 2024;1.
19. Lyu Y, Wang W, Sun Y, Rashdan I. Measurement-based fading characteristics analysis and modeling of UAV to vehicles channel. Veh Commun 2024;45:100707.
20. 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification. 3rd Generation Partnership Project (3GPP); 2017. 36.331. Version 14.2.2.
21. Döttling M, Mohr W, Osseiran A. Radio technologies and concepts for IMT-advanced. John Wiley & Sons; 2010. Available from: http://dx.doi.org/10.1109/pesa.2017.8277746 [Last accessed on 29 Sep 2024].
22. Cui Z, Briso-Rodríguez C, Guan K, Zhong Z, Quitin F. Multi-frequency air-to-ground channel measurements and analysis for UAV communication systems. IEEE Access 2020;8:110565-74.
23. Rappaport TS. Wireless Communications: Principles and Practice. USA: Prentice Hall PTR; 2001. Available from: https://telkom2013.wordpress.com/wp-content/uploads/2014/02/wireless-comm-princip-n-practice-theodoresrappaport.pdf [Last accessed on 29 Sep 2024].
24. Cai X, Rodríguez-Piñeiro J, Yin X, et al. An empirical air-to-ground channel model based on passive measurements in LTE. IEEE Trans Veh Technol 2019;68:1140-54.
25. Yang G, Zhang Y, He Z, Wen J, Ji Z, Li Y. Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw Antennas Propag 2019;13:1113-21.
26. Li H, Chen X, Mao K, et al. Air-to-ground path loss prediction using ray tracing and measurement data jointly driven DNN. Comput Commun 2022;196:268-76.
27. Huang Y, Cui H, Hou Y, et al. Space-based electromagnetic spectrum sensing and situation awareness. Space Sci Technol 2024;4:0109.
28. Union IT. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz; 2003. pp. 1411-2. Available from: https://www.itu.int/rec/R-REC-P.1411-12-202308-I/en [Last accessed on 29 Sep 2024].
29. Isabona J, Srivastava VM. Hybrid neural network approach for predicting signal propagation loss in urban microcells. In: 2016 IEEE region 10 humanitarian technology conference (R10-HTC); 2016. pp. 1-5.