REFERENCES
1. IDC. Future of industry ecosystems: shared data and insights. 2021. Available from: https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/[Last accessed on 23 Sep 2024].
2. Business. Cybercrime thrives during pandemic: verizon 2021 data breach investigations report. 2021. Available from: https://www.verizon.com/about/news/verizon-2021-data-breach-investigations-report[Last accessed on 23 Sep 2024].
3. The White House. Executive order on improving the nation’s cybersecurity. 2021. Available from: https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/[Last accessed on 23 Sep 2024].
4. Syed NF, Shah SW, Shaghaghi A, Anwar A, Baig Z, Doss R. Zero trust architecture (ZTA): a comprehensive survey. IEEE Access 2022;10:57143-79.
5. Yampolskiy RV, Spellchecker MS. Artificial intelligence safety and cybersecurity: a timeline of AI failures. 2016. Available from: https://arxiv.org/pdf/1610.07997[Last accessed on 23 Sep 2024].
6. Wylde A. Zero trust: never trust, always verify. In: 2021 international conference on cyber situational awareness, data analytics and assessment (CyberSA); 2021, pp. 1-4.
7. Paes R, Mazur DC, Venne BK, Ostrzenski J. A guide to securing industrial control networks: Integrating IT and OT systems. IEEE Ind Appl Mag 2019;26:47-53.
8. Zanasi C, Magnanini F, Russo S, Colajanni M. A zero trust approach for the cybersecurity of industrial control systems. In: 2022 IEEE 21st international symposium on network computing and applications; 2022, pp. 1-7.
9. Li S, Iqbal M, Saxena N. Future industry internet of things with zero-trust security. Inf Syst Front 2022:1-14.
10. Greenberg A. The untold story of NotPetya, the most devastating cyberattack in history. 2018. Available from: https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/[Last accessed on 23 Sep 2024].
11. Colombo P, Ferrari E, Tümer ED. Access control enforcement in IoT: state of the art and open challenges in the zero trust era. In: 2021 third IEEE international conference on trust, privacy and security in intelligent systems and applications (TPS-ISA); 2021, pp. 159-66.
12. Chimakurthi VNSS. The challenge of achieving zero trust remote access in multi-cloud environment. ABC J Adv Res 2020;9:89-102.
13. Dhar S, Bose I. Securing IoT devices using zero trust and blockchain. J Org Comput Elect Comm 2021;31:18-34.
14. Samaniego M, Deters R. Zero-trust hierarchical management in IoT. In: 2018 IEEE international congress on internet of things (ICIOT); 2018, pp. 88-95.
15. Cheh C, Chen B. Analyzing openAPI specifications for security design issues. In: 2021 IEEE secure development conference (SecDev); 2021, pp. 15-22.
16. Eckhart M, Ekelhart A. Digital twins for cyber-physical systems security: state of the art and outlook. In: Biffl S, Eckhart M, Lüder A, Weippl E, eds. Security and quality in cyber-physical systems engineering. Cham: Springer; 2019.
17. Lv Z, Li Y, Feng H, Lv H. Deep learning for security in digital twins of cooperative intelligent transportation systems. IEEE Trans Intell Transp Syst 2021;23:16666-75.
18. Sellitto GP, Aranha H, Masi M, Pavleska T. Enabling a zero trust architecture in smart grids through a digital twin. In: Dependable computing-EDCC 2021 workshops. 2021. pp. 73-81.
19. Jagannath J, Ramezanpour K, Jagannath A. Digital twin virtualization with machine learning for IoT and beyond 5G networks: research directions for security and optimal control. arXiv 2022. pp. 81-6.
20. Marsh SP. Formalising trust as a computational concept. PhD thesis. 1994. Available from: https://www.cs.stir.ac.uk/ kjt/techreps/pdf/TR133.pdf[Last accessed on 23 Sep 2024].
21. Welborn R, Kasten V. The Jericho principle: how companies use strategic collaboration to find new sources of value. John Wiley & Sons; 2003. Available from: https://hbswk.hbs.edu/archive/the-jericho-principle-how-companies-use-strategic-collaboration-to-find-new-sources-of-value[Last accessed on 23 Sep 2024].
22. Flanigan J. Zero trust network model. Medford, MA: Tufts University; 2018. Available from: https://www.cs.tufts.edu/comp/116/archive/fall2018/jflanigan.pdf[Last accessed on 23 Sep 2024].
23. Kindervag J. Build security into your network’s DNA: the zero trust network architecture. Forrester Research Inc. 2010. Available from: https://www.actiac.org/system/files/Forrester_zero_trust_DNA.pdf[Last accessed on 23 Sep 2024].
24. Higgins KJ. Forrester pushes 'zero trust' model for security; 2010.Available from: https://www.darkreading.com/perimeter/forrester-pushes-zero-trust-model-for-security[Last accessed on 23 Sep 2024].
25. Alagappan A, Venkatachary SK, Andrews LJB. Augmenting zero trust network architecture to enhance security in virtual power plants. Energy Rep 2022;8:1309-20.
26. Basim Al-Ruwaii GDM. Basim Al-Ruwaii GDM. Why the time has come to embrace the zero-trust model of cybersecurity; 2021. Available from: https://www.weforum.org/agenda/2021/10/why-the-time-has-come-for-the-zero-trust-model-of-cybersecurity/[Last accessed on 23 Sep 2024].
27. Cunningham C. The zero trust eXtended (ZTX) ecosystem. Cambridge, MA: Forrester; 2018. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cunningham+C.+The+zero+trust+eXtended+%28ZTX%29+ecosystem.+Cambridge%2C+MA%3A+Forrester%3B+2018.+28.&btnG=[Last accessed on 23 Sep 2024].
29. Kerman A, Borchert O, Rose S, Tan A. Implementing a zero trust architecture. National Institute of Standards and Technology; 2020. Available from: https://www.nccoe.nist.gov/sites/default/files/legacy-files/zta-project-description-final.pdf[Last accessed on 23 Sep 2024].
30. Pratt MK. The history and evolution of zero-trust security. Techtarget; 2022. Available from: https://www.techtarget.com/whatis/feature/History-and-evolution-of-zero-trust-security[Last accessed on 23 Sep 2024].
31. OKTA. The state of zero trust security 2023; 2023. Available from: https://www.okta.com/resources/whitepaper-the-state-of-zero-trust-security-2023/y[Last accessed on 23 Sep 2024].
32. SANS. Building a zero trust framework: key strategies for 2024 and beyond; 2024. Available from: https://www.sans.org/blog/building-a-zero-trust-framework-key-strategies-for-2024-and-beyond/[Last accessed on 23 Sep 2024].
33. MarketsandMarkets. Zero trust security market by solution type. 2023. Available from: https://www.marketsandmarkets.com/Market-Reports/zero-trust-security-market-2782835.html[Last accessed on 23 Sep 2024].
34. Chen B, Qiao S, Zhao J, et al. A security awareness and protection system for 5G smart healthcare based on zero-trust architecture. IEEE Int Things J 2020;8:10248-63.
35. Stafford V. Zero trust architecture. NIST Special Publication; 2020. Available from: https://doi.org/10.6028/NIST.SP.800-20[Last accessed on 23 Sep 2024].
36. Rose S, Borchert O, Mitchell S, Connelly S. Zero trust architecture. National Institute of Standards and Technology; 2020. Available from: https://www.nist.gov/publications/zero-trust-architecture[Last accessed on 23 Sep 2024].
37. Gilman E, Barth D. Zero trust networks. O'Reilly Media, Incorporated; 2017. Available from: https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/[Last accessed on 23 Sep 2024].
38. Yan X, Wang H. Survey on zero-trust network security. In: Artificial intelligence and security: 6th international conference, ICAIS 2020. July 17-20, 2020; Hohhot, China; pp. 50-60.
39. Buck C, Olenberger C, Schweizer A, Völter F, Eymann T. Never trust, always verify: A multivocal literature review on current knowledge and research gaps of zero-trust. Comput Secur 2021;110:102436.
40. Kim D, Kwon BJ, Dumitraș T. Certified malware: measuring breaches of trust in the windows code-signing pki. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security; 2017. pp. 1435-48.
41. Cao Y, Pokhrel SR, ZHU Y, Ram Mohan Doss R, Li G. Automation and orchestration of zero trust architecture: potential solutions and challenges. Elsevier; 2022.
43. Zhou L, Su C, Li Z, Liu Z, Hancke GP. Automatic fine-grained access control in SCADA by machine learning. Future Gener Comput Syst 2019;93:548-59.
44. Xiaopeng T, Haohao S. A zero trust method based on BLP and BIBA model. In: 2021 14th international symposium on computational intelligence and design (ISCID); 2021. pp. 96-100.
45. Rousseau TL. Rousseau TL. Insider threat: replacing the trusted security model. Capella University; 2021. Available from: https://www.proquest.com/openview/fae73abd35136d16fcf4f7ab10f1c18e/1?pq-origsite=gscholar&cbl=18750&diss=y[Last accessed on 23 Sep 2024].
46. Jansen JN, Tokerud S. Jansen JN, Tokerud S. Designing the extended zero trust maturity model a holistic approach to assessing and improving an organization’s maturity within the technology, processes and people domains of information security. University of Agder; 2022. Available from: https://uia.brage.unit.no/uia-xmlui/handle/11250/3019802[Last accessed on 23 Sep 2024].
47. Kak S. Kak S. Zero Trust evolution & transforming enterprise security. California State University San Marcos; 2022. Available from: https://scholarworks.calstate.edu/concern/theses/41687p91q?locale=it[Last accessed on 23 Sep 2024].
48. Liu N, Yu M, Zang W, Sandhu RS. Cost and effectiveness of trustzone defense and side-channel attack on ARM platform. J Wirel Mob Netw Ubiquit Comput Depend Appl 2020;11:1-15.
49. Song M, Wang D. AB-PAKE: achieving fine-grained access control and flexible authentication. IEEE Trans Inf Forensics Secur 2024;19:6197-212.
50. He Y, Huang D, Chen L, Ni Y, Ma X. A survey on zero trust architecture: challenges and future trends. Wirel Commun Mob Com 2022;2022:6476274.
51. Tian S, Bai F, Shen T, Zhang C, Gong B. Vssb-raft: a secure and efficient zero trust consensus algorithm for blockchain. ACM Trans Sensor Netw 2024;20:1-22.
52. Fernandez EB, Brazhuk A. A critical analysis of zero trust architecture (ZTA). Comput Stand Inter 2024;89:103832.
53. Botacin M. GPThreats-3: is automatic malware generation a threat? In: 2023 IEEE security and privacy workshops (SPW); 2023. pp. 238-54.
54. Zhao K, Pan L. A machine learning based trust evaluation framework for online social networks. In: 2014 IEEE 13th international conference on trust, security and privacy in computing and communications; 2014. pp. 69-74.
55. El-Sayed H, Ignatious HA, Kulkarni P, Bouktif S. Machine learning based trust management framework for vehicular networks. Veh Commun 2020;25:100256.
56. Alanazi R, Aljuhani A. Anomaly detection for industrial internet of things cyberattacks. Comput Syst Sci Eng 2023;44:2361-78.
57. Ho S, Al Jufout S, Dajani K, Mozumdar M. A novel intrusion detection model for detecting known and innovative cyberattacks using convolutional neural network. IEEE Open J Comput Soc 2021;2:14-25.
58. Saharkhizan M, Azmoodeh A, Dehghantanha A, Choo KKR, Parizi RM. An ensemble of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE Int Things J 2020;7:8852-59.
59. Takiddin A, Ismail M, Zafar U, Serpedin E. Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids. IEEE Syst J 2022;16:4106-17.
60. Alaparthi S, Mishra M. Bidirectional encoder representations from transformers (BERT): a sentiment analysis odyssey. arXiv 2020.
61. Gao Q, Wang Y, Cheng X, et al. Identification of vulnerable lines in smart grid systems based on affinity propagation clustering. IEEE Int Things J 2019;6:5163-71.
62. Wang WT, Wu YL, Tang CY, Hor MK. Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data. In: 2015 International Conference on Machine Learning and Cybernetics (ICMLC); 2015. pp. 445-51.
63. Nishikaze H, Ozawa S, Kitazono J, et al. Large-scale monitoring for cyber attacks by using cluster information on darknet traffic features. Proc Comput Sci 2015;53:175-82.
64. An P, Wang Z, Zhang C. Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection. Inf Proc Manag 2022;59:102844.
65. Kiss I, Genge B, Haller P. A clustering-based approach to detect cyber attacks in process control systems. In: 2015 IEEE 13th international conference on industrial informatics (INDIN); 2015. pp. 142-48.
66. Kumar P, Kumar AA, Sahayakingsly C, Udayakumar A. Analysis of intrusion detection in cyber attacks using DEEP learning neural networks. Peer Peer Netw Appl 2021;14:2565-84.
67. Lokhande MP, Patil DD. Trust computation model for iot devices using machine learning techniques. In: Proceeding of first doctoral symposium on natural computing research: DSNCR 2020. Springer; 2021. pp. 195-205.
68. Kumari M, Gupta S. Performance comparison between Chaos and quantum-chaos based image encryption techniques. Multimed Tools Appl 2021;80:33213-55.
69. Wu YG, Yan WH, Wang JZ. Real identity based access control technology under zero trust architecture. In: 2021 international conference on wireless communications and smart grid (ICWCSG); 2021. pp. 18-22.
70. Wang Zh, Jin Mh, Jiang L, et al. Secure access method of power internet of things based on zero trust architecture. In: International conference on swarm intelligence. Springer; 2023. pp. 386-99.
71. Sheikh N, Pawar M, Lawrence V. Zero trust using network micro segmentation. In: IEEE INFOCOM 2021-IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2021. pp. 1-6.
72. Tyler D, Viana T. Trust no one? a framework for assisting healthcare organisations in transitioning to a zero-trust network architecture. Appl Sci 2021;11:7499.
73. Teerakanok S, Uehara T, Inomata A. Migrating to zero trust architecture: reviews and challenges. Secur Commun Netw 2021;2021:1-10.
74. Ahmed I, Nahar T, Urmi SS, Taher KA. Protection of sensitive data in zero trust model. In: Proceedings of the international conference on computing advancements; 2020. pp. 1-5.
75. Mehraj S, Banday MT. Establishing a zero trust strategy in cloud computing environment. In: 2020 International conference on computer communication and informatics (ICCCI); 2020. pp. 1-6.
76. Patil AP, Karkal G, Wadhwa J, Sawood M, Reddy KD. Design and implementation of a consensus algorithm to build zero trust model. In: 2020 IEEE 17th India council international conference (INDICON); 2020. pp. 1-5.
78. Vang T, Lind ML. Factors influencing cloud computing adoption in a zero-trust environment. Researchsquare; 2023. Available from: https://doi.org/10.21203/rs.3.rs-3152878/v1[Last accessed on 23 Sep 2024].
79. Chuan T, Lv Y, Qi Z, Xie L, Guo W. An implementation method of zero-trust architecture. J Phys Conf Ser 2020;1651:012010.
80. DeCusatis C, Liengtiraphan P, Sager A, Pinelli M. Implementing zero trust cloud networks with transport access control and first packet authentication. In: 2016 IEEE international conference on smart cloud (SmartCloud); 2016. pp. 5-10.
81. Lookout. Airbus deploys lookout mobile endpoint security to 100, 000+ global workforce; 2021. Available from: https://www.lookout.com/documents/case-studies/us/Lookout-Airbus-mes-case-study.pdf[Last accessed on 23 Sep 2024].
82. Muncaster P. Capital one breach shines light on cloud security risks, human error, and insider threats. Phil Muncaster; 2022. Available from: https://openvpn.net/blog/capital-one-breach-highlights-cloud-security-risks/[Last accessed on 23 Sep 2024].
83. Mark S, Rachel C. The NASA pathway to zero trust. NASA; 2023. Available from: https://www.nasa.gov/wp-content/uploads/2023/10/548242-oct-dec-2023-it-talk-design.pdf[Last accessed on 23 Sep 2024].
84. STAMFORD C. Gartner predicts 75 fail to implement zero trust security policies through 2026. GARTNER; 2024. Available from: https://www.gartner.com/en/newsroom/press-releases/2024-03-28-gartner-predicts-75-percent-of-us-federal-agencies-will-fail-to-implement-zero-trust-security-policies-through-2026[Last accessed on 23 Sep 2024].
85. D'Silva D, Ambawade DD. Building a zero trust architecture using kubernetes. In: 2021 6th international conference for convergence in technology (i2ct); 2021. pp. 1-8.
86. Bobbert Y, Scheerder J. Zero trust validation: from practice to theory: an empirical research project to improve zero trust implementations. In: 2022 IEEE 29th annual software technology conference (STC); 2022. pp. 93-104.
87. Scott B. How a zero trust approach can help to secure your AWS environment. Netw Secur 2018;2018:5-8.
88. Lambert KD. Applications of defense-in-depth and zero-trust cryptographic products in emergent cybersecurity environments. In: Emergent behavior in system of systems engineering. CRC Press; 2022. pp. 93-117. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003160816-7/applications-defense-depth-zero-trust-cryptographic-products-emergent-cybersecurity-environments-kent-lambert[Last accessed on 23 Sep 2024].
89. Phiayura P, Teerakanok S. A comprehensive framework for migrating to zero trust architecture. IEEE Access 2023;11:19487-511.
90. Adahman Z, Malik AW, Anwar Z. An analysis of zero-trust architecture and its cost-effectiveness for organizational security. Comput Secur 2022;122:102911.
91. Greenwood D. Applying the principles of zero-trust architecture to protect sensitive and critical data. Netw Secur 2021;2021:7-9.
92. de Weever C, Andreou M. Zero trust network security model in containerized environments. Amsterdam, The Netherlands: University of Amsterdam; 2020. Available from: https://www.os3.nl/_media/2019-2020/courses/rp1/p01_report.pdf[Last accessed on 23 Sep 2024].
93. Bodström TT. Strategic cyber environment management with zero trust and cyber counterintelligence. J Inf Warf 2022;21:1-12. Available from: https://www.jinfowar.com/journal/volume-21-issue-3/strategic-cyber-environment-management-zero-trust-cyber-counterintelligence[Last accessed on 23 Sep 2024].
94. DeWeaver Ⅲ LF. Exploring how universities can reduce successful cyberattacks by incorporating zero trust. Colorado Technical University; 2021. Available from: https://dl.acm.org/doi/abs/10.5555/AAI28863560[Last accessed on 23 Sep 2024].
95. Hatakeyama K, Kotani D, Okabe Y. Zero trust federation: sharing context under user control towards zero trust in identity federation. In: 2021 IEEE international conference on pervasive computing and communications workshops and other affiliated events (percom workshops); 2021. pp. 514-19.
96. Yao Q, Wang Q, Zhang X, Fei J. Dynamic access control and authorization system based on zero-trust architecture. In: Proceedings of the 2020 1st international conference on control, robotics and intelligent system; 2020. pp. 123-27.
98. Alappat MR. Multifactor authentication using zero trust. Rochester Institute of Technology; 2023. Available from: https://repository.rit.edu/theses/11504/ [Last accessed on 23 Sep 2024].
99. Yeoh W, Liu M, Shore M, Jiang F. Zero trust cybersecurity: critical success factors and a maturity assessment framework. Comput Secur 2023;133:103412.
100. Cheng T, Moore P, Samara-Rubio D, Lee S. Universal wellpad control: an open automation and control platform with zero-trust and zero-touch provisioning system. In: Abu Dhabi international petroleum exhibition and conference; 2022. p. D011S027R002.
101. Sanders G, Morrow T, Richmond N, Woody C, PA CMUP. Integrating zero trust and devsecops. Tech. Rep; 2021. Available from: https://insights.sei.cmu.edu/documents/5717/2021_019_001_980389.pdf[Last accessed on 23 Sep 2024].
102. Devlekar S, Ramteke V. Identity and access management: high-level conceptual framework. Cardiometry 2022;24:393-99.
103. Ahmed G. Improving IoT privacy, data protection and security concerns. Int J Technol Innov Manag 2021;1:18-33.
104. Zakaria KN, Zainal A, Othman SH, Kassim MN. Feature extraction and selection method of cyber-attack and threat profiling in cybersecurity audit. In: 2019 international conference on cybersecurity (ICoCSec); 2019. pp. 1-6.
105. Kato S, Tanabe R, Yoshioka K, Matsumoto T. Adaptive observation of emerging cyber attacks targeting various IoT devices. In: 2021 IFIP/IEEE international symposium on integrated network management (IM); 2021. pp. 143-51. Available from: xx[Last accessed on 23 Sep 2024].
106. Bout E, Loscri V, Gallais A. How machine learning changes the nature of cyberattacks on IoT networks: a survey. IEEE Commun Surv Tut 2021;24:248-79.
107. Adamsky F, Aubigny M, Battisti F, et al. Integrated protection of industrial control systems from cyber-attacks: the ATENA approach. Int J Crit Infr Prot 2018;21:72-82.
108. Perera S, Jin X, Maurushat A, Opoku DGJ. Factors affecting reputational damage to organisations due to cyberattacks. Informatics 2022;9:28.
109. Dasawat SS, Sharma S. Cyber security integration with smart new age sustainable startup business, risk management, automation and scaling system for entrepreneurs: an artificial intelligence approach. In: 2023 7th international conference on intelligent computing and control systems (ICICCS); 2023. pp. 1357-63.
110. Qazi FA. Study of zero trust architecture for applications and network security. In: 2022 IEEE 19th international conference on smart communities: improving quality of life using ICT, IoT and AI (HONET); 2022. pp. 111-16.
111. Eidle D, Ni SY, DeCusatis C, Sager A. Autonomic security for zero trust networks. In: 2017 IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON); 2017. pp. 288-93.
113. Zanasi C, Russo S, Colajanni M. Flexible zero trust architecture for the cybersecurity of industrial iot infrastructures. Ad Hoc Netw 2024;156:103414.
114. Xiao S, Ye Y, Kanwal N, Newe T, Lee B. SoK: context and risk aware access control for zero trust systems. Secur Commun Netw 2022;2022:7026779.
115. Selim GEI, Hemdan EED, Shehata AM, El-Fishawy NA. Anomaly events classification and detection system in critical industrial internet of things infrastructure using machine learning algorithms. Multimed Tools Appl 2021;80:12619-40.
116. GEORGE DAS, George AH, Baskar T, Pandey D. XDR: the evolution of endpoint security solutions-superior extensibility and analytics to satisfy the organizational needs of the future. Int J Adv Res Sci Commun Technol 2021;8:493-501.
117. Hassan WU, Bates A, Marino D. Tactical provenance analysis for endpoint detection and response systems. In: 2020 IEEE symposium on security and privacy (SP); 2020. pp. 1172-89.
118. Zaheer Z, Chang H, Mukherjee S, Van der Merwe J. eztrust: network-independent zero-trust perimeterization for microservices. In: Proceedings of the 2019 ACM Symposium on SDN Research; 2019. pp. 49-61.
119. Ali B, Hijjawi S, Campbell LH, Gregory MA, Li S. A maturity framework for zero-trust security in multiaccess edge computing. Secur Commun Netw 2022;2022:3178760.
120. Bertino E, Brancik K. Services for zero trust architectures-a research roadmap. In: 2021 IEEE international conference on web services (ICWS); 2021. pp. 14-20.
121. Khan MS, Ferens K, Kinsner W. A chaotic complexity measure for cognitive machine classification of cyber-attacks on computer networks. Int J Cogn Inform Nat Intell 2014;8:45-69.
122. Shaukat S, Arshid A, Eleyan A, et al. Chaos theory and its application: an essential framework for image encryption. Chaos Theory Appl 2020;2:17-22.
123. Alabdulkreem E, Alotaibi SS, Alamgeer M, et al. Intelligent cybersecurity classification using chaos game optimization with deep learning model. Comput Syst Sci Eng 2023;45:971-83.
124. Okumura M, Tomoki K, Okamoto E, Yamamoto T. Chaos-based interleave division multiple access scheme with physical layer security. In: 2021 IEEE 18th annual consumer communications & networking conference (CCNC); 2021. pp. 1-2.
125. Mogos G. Quantum fingerprint scrambling algorithm based on chaos theory. In: 2023 17th international conference on engineering of modern electric systems (EMES); 2023. pp. 1-4.
126. de Lima Marquezino, F., Portugal, R., Lavor, C. Shor’s algorithm for integer factorization. In: A primer on quantum computing. Cham: Springer; 2019.
127. Zhang K, Korepin VE. Depth optimization of quantum search algorithms beyond Grover's algorithm. Phys Rev A 2020;101:032346.
129. Lavor C, Manssur LRU, Portugal R. Grover's algorithm: quantum database search. arXiv; 2003. Available from: https://arxiv.org/abs/quant-ph/0301079[Last accessed on 23 Sep 2024].
130. Weinstein YS, Pravia M, Fortunato E, Lloyd S, Cory DG. Implementation of the quantum Fourier transform. Phys Rev Lett 2001;86:1889.
131. Martin A, Lamata L, Solano E, Sanz M. Digital-analog quantum algorithm for the quantum fourier transform. Phys Rev Res 2020;2:013012.
132. Aaronson S, Rall P. Quantum approximate counting, simplified. In: Symposium on simplicity in algorithms; 2020. pp. 24-32./10.1137/1.9781611976014.5.
133. Szymanski TH. The “cyber security via determinism” paradigm for a quantum safe zero trust deterministic internet of things (IoT). IEEE Access 2022;10:45893-930.
134. Perlner RA, Cooper DA. Quantum resistant public key cryptography: a survey. In: Proceedings of the 8th symposium on identity and trust on the internet; 2009. pp. 85-93.
135. Abdolmaleki B, Blümel H, Fenzi G, Khajeh H, KOpsell S, Zarezadeh M. Post-quantum access control with application to secure data retrieval; 2024. Available from: https://eprint.iacr.org/2024/1160[Last accessed on 23 Sep 2024].
136. Jemihin ZB, Tan SF, Chung GC. Attribute-based encryption in securing big data from post-quantum perspective: a survey. Cryptography 2022;6:40.
137. Farouk A, Al-Kuwari S, Abulkasim H, et al. Quantum computing: a tool for zero-trust wireless networks. IEEE Netw 2024;1:1.
138. Jiang J, Wang D. QPASE: quantum-resistant password-authenticated searchable encryption for cloud storage. IEEE Trans Inf Forensics Secur 2024;19:4231-46.
140. Basta N, Ikram M, Kaafar MA, Walker A. Towards a zero-trust micro-segmentation network security strategy: an evaluation framework. In: NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium; 2022. pp. 1-7.