REFERENCES
1. Li W, Yang F. Information fusion over network dynamics with unknown correlations: an overview. Int J Netw Dyn Intell 2023;2:100003.
2. Jiang L, Yan L, Xia Y, Guo Q, Fu M, Lu K. Asynchronous multirate multisensor data fusion over inreliable measurements with correlated noise. IEEE Trans Aerosp Electron Syst 2017;53:2427-37.
3. Li S, Deng Z, Feng X, He R, Pan F. Joint parameter and state estimation for stochastic uncertain system with multivariate skew t noises. Chinese J Aeronaut 2022;35:69-86.
4. Darvishi H, Ciuonzo D, Eide ER, Rossi PS. Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture. IEEE Sensors J 2021;21:4827-38.
5. Chen B, Ho DWC, Zhang WA, Yu L. Networked fusion estimation with bounded noises. IEEE Trans Automat Control 2017;62:5415-21.
6. Niu Y, Sheng L, Gao M, Zhou D. Dynamic event-triggered state estimation for continuous-time polynomial nonlinear systems with external disturbances. IEEE Trans Ind Inf 2020;17:3962-70.
7. Chen L, Bo K, Lee F, Chen Q. Advanced feature fusion algorithm based on multiple convolutional neural network for scene recognition. Comput Model Eng Sci 2020;122:505-23.
8. Yan L, Li XR, Xia Y, Fu M. Optimal sequential and distributed fusion for state estimation in cross-correlated noise. Automatica 2013;49:3607-12.
9. Shen Y, Wang Z, Shen B, Alsaadi FE. H∞ filtering for multi-rate multi-sensor systems with randomly occurring sensor saturations under the p-persistent CSMA protocol. IET Control Theory Appl 2020;14:1255-65.
10. Geng H, Wang Z, Alsaadi FE, Alharbi KH, Cheng Y. Federated Tobit Kalman filtering fusion with dead-zone-like censoring and dynamical bias under the round-robin protocol. IEEE Trans Signal Inf Process Netw 2020;7:1-16.
11. Hu Z, Hu J, Tan H, Huang J, Cao Z. Distributed resilient fusion filtering for nonlinear systems with random sensor delay under round-robin protocol. Int J Syst Sci 2022;53:2786-99.
12. Allik B, Miller C, Piovoso MJ, Zurakowski R. The Tobit Kalman filter: an estimator for censored measurements. IEEE Trans Control Syst Technol 2015;24:365-71.
13. Hu J, Wang Z, Gao H. Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises. Automatica 2013;49:3440-8.
14. Shen Y, Wang Z, Shen B, Han QL. Recursive state estimation for networked multirate multisensor systems with distributed time-delays under round-robin protocol. IEEE Trans Cyber 2020;52:4136-46.
15. Li X, Dong H, Wang Z, Han F. Set-membership filtering for state-saturated systems with mixed time-delays under weighted try-once-discard protocol. IEEE Trans Circuits Syst Ⅱ 2018;66:312-6.
16. Dai D, Li J, Song Y, Yang F. Event-based recursive filtering for nonlinear bias-corrupted systems with amplify-and-forward relays. Syst Sci Control Eng 2024;12:2332419.
17. Jiang B, Gao H, Han F, Dong H. Recursive filtering for nonlinear systems subject to measurement outliers. Sci China Inf Sci 2021;64:172206.
18. Wang Z, Liu Z, Dai Y, Cai K. Recursive estimation for system with random transmission loss and censored measurement. IEEE Trans Circuits Syst Ⅱ 2022;70:2281-85.
19. LoumponiaS K, Tsaklidis G. Kalman filtering with censored measurements. J Appl Stat 2022;49:317-35.
20. Han F, Wang Z, Dong H. Partial-nodes-based scalable H∞-consensus filtering with censored measurements. In: Distributed filtering, control and synchronization. studies in systems, decision and control. Cham: Springer; 2022.
21. Li W, Jia Y, Du J. Tobit Kalman filter with time-correlated multiplicative measurement noise. IET Control Theory Appl 2017;11:122-8.
22. Allik B, Miller C, Piovoso MJ, Zurakowski R. Nonlinear estimators for censored data: A comparison of the EKF, the UKF and the Tobit Kalman filter. In: 2015 American Control Conference (ACC). Chicago, USA, 2015; pp. 5146-51.
23. Allik B, Miller C, Piovoso MJ, Zurakowski R. Estimation of saturated data using the Tobit Kalman filter. In: 2014 American control conference; Portland, OR, USA, 2014; pp. 4151-6.
24. Han F, Dong H, Wang Z, Li G, Alsaadi FE. Improved Tobit Kalman filtering for systems with random parameters via conditional expectation. Signal Process 2018;147:35-45.
25. Zou L, Wang Z, Han QL, Zhou D. Moving horizon estimation for networked time-delay systems under round-robin protocol. IEEE Trans Automat Control 2019;64:5191-98.
26. Wen C, Wang Z, Liu Q, Alsaadi FE. Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects. IEEE Trans Syst Man Cyber Syst 2018;48:930-41.
27. Li Q, Wang Z, Li N, Sheng W. A dynamic event-triggered approach to recursive filtering for complex networks with switching topologies subject to random sensor failures. IEEE Trans Neural Netw Learn Syst 2020;31:4381-8.
28. Li XR, Zhu Y, Wang J, Han C. Optimal linear estimation fusion.I. Unified fusion rules. IEEE Trans Inf Theory 2003;49:2192-208.
29. Song E, Zhu Y, Zhou J, You Z. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica 2007;43:1450-6.
31. Shen Y, Wang Z, Shen B, Alsaadi FE, Alsaadi FE. Fusion estimation for multi-rate linear repetitive processes under weighted try-once-discard protocol. Inf Fusion 2020;55:281-91.
32. Lin H, Sun S. Optimal sequential fusion estimation with stochastic parameter perturbations, fading measurements, and correlated noises. IEEE Trans Signal Process 2018;66:3571-83.
33. Shen B, Wang Z, Tan H, Chen H. Robust fusion filtering over multisensor systems with energy harvesting constraints. Automatica 2021;131:109782.
34. Geng H, Liu H, Ma L, Yi X. Multi-sensor filtering fusion meets censored measurements under a constrained network environment: advances, challenges and prospects. Int J Syst Sci 2021;52:3410-36.
35. Sun J, Shen B, Liu Y. A resilient outlier-resistant recursive filtering approach to time-delayed spatial–temporal systems with energy harvesting sensors. ISA Trans 2022;127:41-9.
36. Hu G, Wang Z, Alsaadi FE, Hayat T. Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Inf Fusion 2017;38:74-83.
37. Han F, Wang Z, Dong H, Alsaadi FE, Alharbi KH. A local approach to distributed H∞-consensus state estimation over sensor networks under hybrid attacks: Dynamic event-triggered scheme. IEEE Trans Signal Inf Process Netw 2022;8:556-70.
38. Wildhagen S, Müller MA, Allgöwer F. Predictive control over a dynamical token bucket network. IEEE Control Syst Lett 2019;3:859-64.
39. Khashooei AB, Antunes DJ, Heemels WPMH. Output-based event-triggered control with performance guarantees. IEEE Trans Automat Control 2017;62:3646-52.
40. Linsenmayer S, Carabelli BW, Wildhagen S, Rothermel K, Allgöwer F. Controller and triggering mechanism co-design for control over time-slotted networks. IEEE Trans Control Netw Syst 2021;8:222-32.