REFERENCES

1. Boeing G. Measuring the complexity of urban form and design. Urban Des Int 2018;23:281-92.

2. Rodrigue JP. The geography of transport systems. London: Routledge; 2020. Available from: https://www.google.co.uk/books/edition/The_Geography_of_Transport_Systems/PfEdAAAAQBAJ?hl=en&gbpv=1 [Last accessed on 30 Sep 2024].

3. Deloitte. Generative AI in transportation management: AI’s impact on supply chain logistics. 2024. Available from: https://www2.deloitte.com/us/en/blog/business-operations-room-blog/2024/generative-ai-in-transportation-management.html [Last accessed on 30 Sep 2024].

4. Gartner. Leading the IoT. 2024. Available from: https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf [Last accessed on 30 Sep 2024].

5. International Transport Forum. Preparing infrastructure for automated vehicles. 2024. Available from: https://www.itf-oecd.org/preparing-infrastructure-automated-vehicles [Last accessed on 30 Sep 2024].

6. McKinsey & Company. Infrastructure technologies: challenges and solutions for smart mobility in urban areas. 2024. Available from: https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/infrastructure-technologies-challenges-and-solutions-for-smart-mobility-in-urban-areas [Last accessed on 30 Sep 2024].

7. PwC. Smart cities: mobility ecosystems for a more sustainable future. 2024. Available from: https://www.pwc.com/gx/en/issues/reinventing-the-future/smart-mobility-hub/sustainable-mobility-ecosystems-in-smart-cities.html [Last accessed on 30 Sep 2024].

8. Kumar P, Gupta GP, Tripathi R. Design of anomaly-based intrusion detection system using fog computing for IoT network. Aut Control Comp Sci 2021;55:137-47.

9. Noura H, Theilliol D, Ponsart JC, Chamseddine A. Fault-tolerant control systems: design and practical applications. Berlin: Springer Science & Business Media; 2009. Available from: https://link.springer.com/book/10.1007/978-1-84882-653-3 [Last accessed on 30 Sep 2024].

10. Sztipanovits J, Koutsoukos X, Karsai G, et al. Science of design for societal-scale cyber-physical systems: challenges and opportunities. Cyber Phys Syst 2019;5:145-72.

11. Fei C, Shen J. Machine learning for securing cyber-physical systems under cyber attacks: a survey. Front Aerosp Eng 2023;4:100041.

12. Abouelyazid M. Advanced artificial intelligence techniques for real-time predictive maintenance in industrial IoT systems: a comprehensive analysis and framework. J AI Assist Sci Discov 2023;3:271-313. Available from: https://scienceacadpress.com/index.php/jaasd/article/view/83 [Last accessed on 30 Sep 2024]

13. Mandala V, Kuppala BMSR, Surabhi SNRD, Kommisetty PDNK. Advancing predictive failure analytics in automotive safety: AI-driven approaches for school buses and commercial trucks. J Artif Intell Big Data 2022;2:9-20.

14. Simon HA. The sciences of the artificial. MIT Press; 1996. Available from: https://monoskop.org/images/9/9c/Simon_Herbert_A_The_Sciences_of_the_Artificial_3rd_ed.pdf [Last accessed on 30 Sep 2024].

15. Bar-Yam, Y. Dynamics of complex systems. Addison-Wesley; 2003. Available from: https://www.taylorfrancis.com/books/mono/10.1201/9780429034961/dynamics-complex-systems-yaneer-bar-yam [Last accessed on 30 Sep 2024].

16. Mitchell M. Complexity: a guided tour. Oxford University Press; 2009. Available from: https://www.google.co.uk/books/edition/Complexity/j-PQCwAAQBAJ?hl=en&gbpv=1 [Last accessed on 30 Sep 2024].

17. Thurner S, Hanel RA, Klimek P. Introduction to the theory of complex systems. Oxford University Press; 2018. Available from: https://www.google.co.uk/books/edition/Introduction_to_the_Theory_of_Complex_Sy/KlFswAEACAAJ?hl=en [Last accessed on 30 Sep 2024].

18. Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Control 2008;32:229-52.

19. Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and fault-tolerant control. Springer; 2006. Available from: https://www.google.co.uk/books/edition/Diagnosis_and_Fault_Tolerant_Control/5mnrCAAAQBAJ?hl=en&gbpv=1 [Last accessed on 30 Sep 2024].

20. Ding SX. Advanced methods for fault diagnosis and fault-tolerant control. Springer; 2020. Available from: https://www.google.co.uk/books/edition/Advanced_methods_for_fault_diagnosis_and/BQgLEAAAQBAJ?hl=en&gbpv=1 [Last accessed on 30 Sep 2024].

21. Lee EA, Seshia SA. Introduction to embedded systems: a cyber-physical systems approach. MIT Press; 2017. Available from: https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV1_08.pdf [Last accessed on 30 Sep 2024].

22. Rathore MM, Attique Shah S, Awad A, Shukla D, Vimal S, Paul A. A cyber-physical system and graph-based approach for transportation management in smart cities. Sustainability 2021;13:7606.

23. Woschank M, Rauch E, Zsifkovits H. A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability 2020;12:3760.

24. Jevinger Å, Zhao C, Persson JA, Davidsson P. Artificial intelligence for improving public transport: a mapping study. Public Transp 2024;16:99-158.

25. Volk M. A safer future: leveraging ai power to improve the cybersecurity in critical infrastructures. Elektrotehniski Vestnik 2024;91:73-94. Available from: https://ev.fe.uni-lj.si/3-2024/Volk.pdf [Last accessed on 30 Sep 2024]

26. Andreoni M, Lunardi WT, Lawton G, Thakkar S. Enhancing autonomous system security and resilience with generative AI: a comprehensive survey. IEEE Access 2024;12:109470-93.

27. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 2009;6:e1000097.

28. Cen J, Yang Z, Liu X, Xiong J, Chen H. A review of data-driven machinery fault diagnosis using machine learning algorithms. J Vib Eng Technol 2022;10:2481-507.

29. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Math Phys Eng Sci 2016;374:20150202.

30. Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Proc 2006;20:1483-510.

31. Lei Y, Li N, Guo L, Li N, Yan T, Lin J. Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech Syst Signal Proc 2020;104:799-834.

32. Padakandla S. A survey of reinforcement learning algorithms for dynamically varying environments. ACM Comput Surv 2021;54:1-25.

33. Hyndman RJ. Athanasopoulos G. Forecasting: principles and practice. OTexts; 2018. Available from: https://otexts.com/fpp3/ [Last accessed on 30 Sep 2024].

34. Liu C, Xu X, Hu D. Multiobjective reinforcement learning: a comprehensive overview. IEEE Trans Syst Man Cyber Syst 2015;45:385-98.

35. Narendra KS, Annaswamy AM. Stable adaptive systems. Courier Corporation; 2012. Available from: https://books.google.ie/books?id=CRJhmsAHCUcC [Last accessed on 30 Sep 2024].

36. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press; 1992. Available from: https://mitpress.mit.edu/9780262581110/adaptation-in-natural-and-artificial-systems/ [Last accessed on 30 Sep 2024].

37. Wooldridge M. An introduction to MultiAgent systems, 2nd edition. John Wiley & Sons; 2009. Available from: https://www.wiley.com/en-be/An+Introduction+to+MultiAgent+Systems%2C+2nd+Edition-p-9780470519462#description-section-us/An+Introduction+to+MultiAgent+Systems%2C+2nd+Edition-p-9780470519462 [Last accessed on 30 Sep 2024].

38. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Commun ACM 2020;63:139-44.

39. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97.

40. Qiu Q, Li R, Zhao X. Failure risk management: adaptive performance control and mission abort decisions. Risk Anal 2024.

41. Breiman L. Random forests. Mach Lear 2001;45:5-32.

42. Manning D, Raghavan P, Schütze H. An introduction to information retrieval. Cambridge University Press; 2009. Available from: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf [Last accessed on 30 Sep 2024].

43. Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circ Syst Video Technol 2004;14:4-20.

44. Karnan M, Akila M, Krishnaraj N. Biometric personal authentication using keystroke dynamics: a review. Appl Soft Comput 2011;11:1565-73.

45. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv 2009;41:1-58.

46. Sommer R, Paxson V. Outside the closed world: on using machine learning for network intrusion detection. IEEE Symp Secur Priv 2010:305-16.

47. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735-80.

48. Kamble S, Gunasekaran A, Dhone NC. Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. Int J Prod Res 2020;58:1319-37.

49. Ersöz OÖ, İnal AF, Aktepe A, Türker AK, Ersöz S. A systematic literature review of the predictive maintenance from transportation systems aspect. Sustainability 2022;14:14536.

50. Wamba-Taguimdje SL, Wamba SF, Kamdjoug JRK, Wanko CET. Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Bus Proc Manag J 2020;26:1893-924.

51. Sadeghi AR, Wachsmann C, Waidner M. Security and privacy challenges in industrial internet of things. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC); 2015. Available from: https://ieeexplore.ieee.org/document/7167238 [Last accessed on 30 Sep 2024].

52. Zheng Z, Yang Y, Niu X, Dai HN, Zhou Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans Ind Infor 2018;14:1606-15.

53. Brous P, Janssen M, Herder P. The dual effects of the Internet of Things (IoT): a systematic review of the benefits and risks of IoT adoption by organizations. Int J Inf Manag 2020;51:101934.

54. Dwivedi YK, Hughes DL, Ismagilova E, et al. Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. Int J Inf Manag 2021;57:101994.

55. Gupta S, Modgil S, Gunasekaran A. Big data in lean six sigma: a review and further research directions. Int J Prod Res 2020;58:947-69.

56. Liu X, Konstantinou C. Reinforcement learning for cyber-physical security assessment of power systems. In 2019 IEEE Milan PowerTech; 2019. Available from: https://ieeexplore.ieee.org/abstract/document/8810568 [Last accessed on 30 Sep 2024].

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/