REFERENCES

1. Bai W, Li T, Long Y, Chen CLP. Event-triggered multigradient recursive reinforcement learning tracking control for multiagent systems. IEEE Trans Neural Netw Learn Syst 2023;34:366-79.

2. Yang Q, Cao W, Meng W, Si J. Reinforcement-learning-based tracking control of waste water treatment process under realistic system conditions and control performance requirements. IEEE Trans Syst Man Cybern Syst 2022;52:5284-94.

3. Yeh PC, Kokotović PV. Adaptive control of a class of nonlinear discrete-time systems. Int J Control 1995;62:303-24.

4. Zhang Y, Wen C, Soh YC. Discrete-time robust backstepping adaptive control for nonlinear time-varying systems. IEEE Trans Automat Control 2000;45:1749-55.

5. Ge SS, Li GY, Lee TH. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 2003;39:807-19.

6. Li YM, Min X, Tong S. Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Trans Fuzzy Syst 2020;28:2363-74.

7. Bai W, Li T, Tong S. NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems. IEEE Trans Cybern 2020;50:4573-84.

8. Bai W, Li T, Long Y, et al. A novel adaptive control design for a class of nonstrict-feedback discrete-time systems via reinforcement learning. IEEE Trans Syst Man Cybern Syst 2024;54:1250-62.

9. Modares H, Lewis FL, Naghibi-Sistani MB. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks. IEEE Trans Neural Netw Learn Syst 2013;24:1513-25.

10. Bai W, Zhou Q, Li T, Li H. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans Cybern 2020;50:3433-43.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/