REFERENCES

1. Ahmed HM, Ahmed AMS, Ragusa MA. On some non-instantaneous impulsive differential equations with fractional brownian motion and Poisson jumps. TWMS J Pure Appl Math 2023;14:125-40.

2. Al-Askar FM. Impact of fractional derivative and brownian motion on the solutions of the Radhakrishnan-Kundu-Lakshmanan equation. J Funct Space 2023;2023:8721106.

3. Benkabdi Y, Lakhel EH. Exponential stability of delayed neutral impulsive stochastic integro-differential systems perturbed by fractional Brownian motion and Poisson jumps. Filomat 2023;37:8829-44.

4. Ghosh D, Frasca M, Rizzo A, et al. The synchronized dynamics of time-varying networks. Phys Rep 2022;949:1-63.

5. Li M, Liu RR, Lü L, Hu MB, Xu S, Zhang YC. Percolation on complex networks: theory and application. Phys Rep 2021;907:1-68.

6. Dutta S, Khanna A, Assoa AS, et al. An ising hamiltonian solver based on coupled stochastic phase-transition nano-oscillators. Nat Electron 2021;4:502-12.

7. Somers VLJ, Manchester IR. Sparse resource allocation for spreading processes on temporal-switching networks. IFAC-PapersOnLine 2023;56:7387-93.

8. Zhong J, Ho DWC, Lu J. A new approach to pinning control of Boolean networks. IEEE Trans Control Network Syst 2021;9:415-26.

9. Zhou W, Zhu Q, Shi P, Su H, Fang J, Zhou L. Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans Cybern 2014;44:2848-60.

10. Giap VN, Nguyen QD, Huang SC. Synthetic adaptive fuzzy disturbance observer and sliding-mode control for chaos-based secure communication systems. IEEE Access 2021;9:23907-28.

11. Dong H, Luo M, Xiao M. Synchronization for stochastic coupled networks with Lévy noise via event-triggered control. Neural Netw 2021;141:40-51.

12. Wu Y, Shen B, Ahn CK, Li W. Intermittent dynamic event-triggered control for synchronization of stochastic complex networks. IEEE Trans Circuits Syst Ⅰ 2021;68:2639-50.

13. Gambuzza LV, Di Patti F, Gallo L, et al. Stability of synchronization in simplicial complexes. Nat Commun 2021;12:1255.

14. Lin H, Wang C, Chen C, et al. Neural bursting and synchronization emulated by neural networks and circuits. IEEE Trans Circuits Syst Ⅰ 2021;68:3397-410.

15. Jo J, Lee S, Hwang SJ. Score-based generative modeling of graphs via the system of stochastic differential equations. Int Conf Mach Learn 2022:10362-83.

16. Luo D, Tian M, Zhu Q. Some results on finite-time stability of stochastic fractional-order delay differential equations. Chaos Solitons Fractals 2022;158:111996.

17. Vaseghi B, Hashemi SS, Mobayen S, Fekih A. Finite time chaos synchronization in time-delay channel and its application to satellite image encryption in OFDM communication systems. IEEE Access 2021;9:21332-44.

18. Zhou L, Zhu Q, Wang Z, Zhou W, Su H. Adaptive exponential synchronization of multislave time-delayed recurrent neural networks with levy noise and regime switching. IEEE Trans Neural Netw Learn Syst 2017;28:2885-98.

19. Qi W, Hou Y, Zong G, Ahn CK. Finite-time event-triggered control for semi-Markovian switching cyber-physical systems with FDI attacks and applications. IEEE Trans Circuits Syst Ⅰ 2021;68:5665-74.

20. Lu Z, Hu J, Mao X. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete Cont Dyn Syst 2019;24:4099-116.

21. Liptser RS, Shiryayev AN. Theory of martingales. Kluwer Academic Publishers; 1982, p. 49.

22. Mao X. Stochastic differential equations and applications. Elsevier; 2008. Available from: https://www.sciencedirect.com/book/9781904275343/stochastic-differential-equations-and-applications [Last accessed on 25 Jun 2024].

23. Fei W, Hu L, Mao X, Shen M. Delay dependent stability of highly nonlinear hybrid stochastic systems. Automatica 2017;82:65-70.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/