REFERENCES

1. Mahen MA, Anirudh SA, Chethana HD, Shashank AC. Design and development of amphibious quadcopter. Int J Mech Prod Eng 2014;2:30-4.

2. Zhang D, Li C, Zhang Y. Dual-hand gesture controlled quadcopter robot. In: 2017 36th Chinese Control Conference (CCC). Dalian, China, 2017, pp. 6869-74.

3. Marwan M, Han M, Dai Y, Cai M. The impact of global dynamics on the fractals of a quadrotor unmanned aerial vehicle (QUAV) chaotic system. Word Sci 2024;32:2450043.

4. Elmas EE, Alkan M, Gao F, Jiang J, Ding R, Han Z. UAV-enabled secure communications by multi-agent deep reinforcement learning. Politeknik Dergisi 2023;26:929-40.

5. Zhang Y, Mou Z, Gao F, Jiang J, Ding R, Han Z. UAV-enabled secure communications by multi-agent deep reinforcement learning. IEEE Trans Veh Technol 2020;69:11599-611.

6. Lu J, Guo X, Huang T, Wang Z. Consensus of signed networked multi-agent systems with nonlinear coupling and communication delays. App Math Comput 2019;350:153-62.

7. Zhou Y, Jin Z, Shi H, et al. UAV-assisted fair communication for mobile networks: a multi-agent deep reinforcement learning approach. Remote Sens 2022;14:5662.

8. Abohashish SMM, Rizk RY, Elsedimy EI. Trajectory optimization for UAV-assisted relay over 5G networks based on reinforcement learning framework. J Wireless Com Network 2023;55:2023.

9. Li H, Li J, Liu M, Gong F. UAV-assisted secure communication for coordinated satellite-terrestrial networks. IEEE Commun Lett 2023;27:1709-13.

10. Luo X, Xie J, Xiong L, Wang Z, Liu Y. UAV-assisted fair communications for multi-pair users: a multi-agent deep reinforcement learning method. Comput Netw 2024;242:110277.

11. Agrawal N, Bansal A, Singh K, Li CP, Mumtaz S. Finite block length analysis of RIS-assisted UAV-based multiuser IoT communication system with non-linear EH. IEEE Trans Commun 2022;70:3542-57.

12. Sun G, Zheng X, Sun Z, et al. UAV-enabled secure communications via collaborative beamforming with imperfect eavesdropper information. IEEE Trans Mobile Comput 2024;23:3291-308.

13. Li J, Liu A, Han G, Cao S, Wang F, Wang X. FedRDR: federated reinforcement distillation-based routing algorithm in UAV-assisted networks for communication infrastructure failures. Drones 2024;8:49.

14. Zhang Z, Liu Q, Wu C, Zhou S, Yan Z. A novel adversarial detection method for UAV vision systems via attribution maps. Drones 2023;7:697.

15. Zhang Y, Zhuang Z, Gao F, Wang J, Han Z. Multi-agent deep reinforcement learning for secure UAV communications. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South); 25-28 May 2020. https://ieeexplore.ieee.org/document/9120592.

16. Tang D, Zhang Q. UAV 5G: enabled wireless communications using enhanced deep learning for edge devices. Wireless Netw 2023; doi: 10.1007/s11276-023-03589-x.

17. Oubbati OS, Atiquzzaman M, Baz A, Alhakami H, Ben-Othman J. Dispatch of UAVs for urban vehicular networks: a deep reinforcement learning approach. IEEE Trans Veh Technol 2021;70:13174-89.

18. Ansari S, Taha A, Dashtipour K, Sambo Y, Abbasi QH, Imran MA. Urban air mobility-a 6G use case? Front Comms Net 2021;2:729767.

19. Shang Y. Consensus tracking and containment in multiagent networks with state constraints. IEEE Trans Syst Man Cybern Syst 2023;53:1656-65.

20. Zhang G. 6G enabled UAV traffic management models using deep learning algorithms. Wireless Netw 2023:1-11.

21. Elamin A, El-Rabbany A. UAV-based multi-sensor data fusion for urban land cover mapping using a deep convolutional neural network. Remote Sens 2022;14:4298.

22. Kuutti S, Fallah S, Katsaros K, Dianati M, Mccullough F, Mouzakitis A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Int Things J 2018;5:829-46.

23. Al-Hourani A, Kandeepan S, Lardner S. Optimal LAP altitude for maximum coverage. IEEE Wireless Commun Lett 2014;3:569-72.

24. Ge J, Zhang S. Adaptive inventory control based on fuzzy neural network under uncertain environment. Complexity 2020;2020:1-10.

25. Sun Q, Ren J, Zhao F. Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal. Appl Math Comput 2022;435:127479.

26. Zhong W, Xu L, Zhu Q, Chen X, Zhou J. MmWave beamforming for UAV communications with unstable beam pointing. China Commun 2019;16:37-46.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/