REFERENCES
1. Modares H, Lewis FL, Naghibi-Sistani MB. Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica 2014;50:193-202.
2. Bertsekas DP. Value and policy iterations in optimal control and adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst 2015;28:500-9.
3. Tsai JSH, Li JS, Leang-San S. Discretized quadratic optimal control for continuous-time two-dimensional systems. IEEE Trans Circuits Syst I Fund Theory Appl 2002;49:116-25.
4. Luo B, Liu DR, Wu HN, Wang D, Lewis FL. Policy gradient adaptive dynamic programming for data-based optimal control. IEEE Trans Cybern 2016;47:3341-54.
5. Jiang Y, Jiang ZP. Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Trans Automat Contr 2015;60:2917-29.
6. Wu X, Chen HL, Wang JJ, Troiano L, Loia V, Fujita H. Adaptive stock trading strategies with deep reinforcement learning methods. Inf Sci 2020;538:142-58.
7. Modares H, Ranatunga I, Lewis FL, Popa DO. Optimized assistive human-robot interaction using reinforcement learning. IEEE Trans Cybern 2015;46:655-67.
8. Wen GX, Chen CLP, Li WN. Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems. Inf Sci 2020;517:230-43.
9. Zhao B, Liu DR, Luo CM. Reinforcement learning-based optimal stabilization for unknown nonlinear systems subject to inputs with uncertain constraints. IEEE Trans Neural Netw Learn Syst 2019;31:4330-40.
10. Wen G, Chen CLP, Ge SS, Yang H, Liu X. Optimized adaptive nonlinear tracking control using actor-critic reinforcement learning strategy. IEEE Trans Ind Inf 2019;15:4969-77.
11. Bai W, Zhou Q, Li T, Li H. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans Cybern 2019;50:3433-43.
12. Yang X, Liu D, Wang D. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints. Int J Control 2014;87:553-66.
13. Bai W, Li T, Tong S. NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems. IEEE Trans Cybern 2020;50:4573-84.
14. Li Y, Zhang J, Liu W, Tong S. Observer-based adaptive optimized control for stochastic nonlinear systems with input and state constraints. IEEE Trans Neural Netw Learn Syst 2021;33:7791-805.
15. Wang J, Gong Q, Huang K, Liu Z, Chen CLP, Liu J. Event-triggered prescribed settling time consensus compensation control for a class of uncertain nonlinear systems with actuator failures. IEEE Trans Neural Netw Learn Syst 2023;34:5590-600.
16. Wang J, Wang C, Liu Z, Chen CLP, Zhang C. Practical fixed-time adaptive ERBFNNs event-triggered control for uncertain nonlinear systems with dead-zone constraint. IEEE Trans Syst Man Cybern Syst 2023:1-10.
17. Cai X, de Marcio M. Adaptive rigidity-based formation control for multirobotic vehicles with dynamics. IEEE Trans Contr Syst Technol 2014;23:389-96.
18. Ren H, Cheng Z, Qin J, Lu R. Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica 2023;154:111100.
19. Wang J, Yan Y, Liu Z, Chen CLP, Zhang C, Chen K. Finite-time consensus control for multi-agent systems with full-state constraints and actuator failures. Neural Netw 2023;157:350-63.
20. Shang Y. Matrix-scaled consensus on weighted networks with state constraints. IEEE Syst J 2023;17:6472-9.
21. Cheng L, Hou ZG, Tan M, Lin Y, Zhang W. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans Neural Netw 2010;21:1351-8.
22. Shen Q, Shi P, Zhu J, Wang S, Shi Y. Neural networks-based distributed adaptive control of nonlinear multiagent systems. IEEE Trans Neural Netw Learn Syst 2019;31:1010-21.
23. Zhang N, Xia J, Park JH, Zhang J, Shen H. Improved disturbance observer-based fixed-time adaptive neural network consensus tracking for nonlinear multi-agent systems. Neural Netw 2023;162:490-501.
24. Zhang Y, Sun J, Liang H, Li H. Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Trans Cybern 2018;50:890-901.
25. Chen J, Li J, Yuan X. Global fuzzy adaptive consensus control of unknown nonlinear multiagent systems. IEEE Trans Fuzzy Syst 2020;32:2239-50.
26. Zhang J, Liu S, Zhang X, Xia J. Event-triggered-based distributed consensus tracking for nonlinear multiagent systems with quantization. IEEE Trans Neural Netw Learn Syst 2022:1-11.
27. Deng C, Wen C, Wang W, Li X, Yue D. Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication. IEEE Trans Automat Contr 2022;68:1176-83.
28. Shao J, Shi L, Cheng Y, Li T. Asynchronous tracking control of leader--follower multiagent systems with input uncertainties over switching signed digraphs. IEEE Trans Cybern 2021;52:6379-90.
29. Yang Y, Xiao Y, Li T. Attacks on formation control for multiagent systems. IEEE Trans Cybern 2021;52:12805-17.
30. Ren H, Wang Y, Liu M, Li H. An optimal estimation framework of multi-agent systems with random transport protocol. IEEE Trans Signal Process 2022;70:2548-59.
31. Gao W, Jiang ZP, Lewis FL, Wang Y. Leader-to-formation stability of multiagent systems): An adaptive optimal control approach. IEEE Trans Automat Contr 2018;63:3581-87.
32. Tan M, Liu Z, Chen CLP, Zhang Y, Wu Z. Optimized adaptive consensus tracking control for uncertain nonlinear multiagent systems using a new event-triggered communication mechanism. Inf Sci 2022;605:301-16.
33. Wen G, Chen CLP. Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback-dynamic multi-agent systems. IEEE Trans Neural Netw Learn Syst 2023;34:1524-36.
34. Zhu HY, Li YX, Tong S. Dynamic event-triggered reinforcement learning control of stochastic nonlinear systems. IEEE Trans Fuzzy Syst 2023;31:2917-28.
35. Bai W, Li T, Long Y, Chen CLP. Event-triggered multigradient recursive reinforcement learning tracking control for multiagent systems. IEEE Trans Neural Netw Learn Syst 2023;34:366-79.
36. Li T, Bai W, Liu Q, Long Y, Chen CLP. Distributed fault-tolerant containment control protocols for the discrete-time multi-agent systems via reinforcement learning method. IEEE Trans Neural Netw Learn Syst 2023;34:3979-91.
37. Zhao Y, Niu B, Zong G, Zhao X, Alharbi KH. Neural network-based adaptive optimal containment control for non-affine nonlinear multi-agent systems within an identifier-actor-critic framework. J Franklin Inst 2023;360:8118-43.
38. Li H, Wu Y, Chen M, Lu R. Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems. IEEE Trans Neural Netw Learn Syst 2023;34:144-56.
39. Bechlioulis CP, Rovithakis GA. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Automat Contr 2008;53:2090-9.
40. Wang X, Xia J, Park JH, Xie X, Chen G. Intelligent control of performance constrained switched nonlinear systems with random noises and its application): an event-driven approach. IEEE Trans Circuits Syst I Regul Pap 2022;69:3736-47.
41. Li Y, Shao X, Tong S. Adaptive fuzzy prescribed performance control of nontriangular structure nonlinear systems. IEEE Trans Fuzzy Syst 2019;28:2416-26.
42. Wang W, Liang H, Pan Y, Li T. Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans Cybern 2020;50:3879-91.
43. Sun K, Qiu J, Karimi HR, Fu Y. Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans Fuzzy Syst 2020;29:1460-71.
44. Chen H, Yan H, Wang Y, Xie S, Zhang D. Reinforcement learning-based close formation control for underactuated surface vehicle with prescribed performance and time-varying state constraints. Ocean Eng 2022;256:111361.