REFERENCES

1. Diez-olivan A, Del Ser J, Galar D, Sierra B. Data fusion and machine learning for industrial prognosis: trends and perspectives towards industry 4.0. Inf Fusion 2019;50:92-111.

2. Xing S, Lei Y, Jia F, Lin J. Intelligent fault diagnosis of rotating machinery using locally connected restricted boltzmann machine in big data era. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM); 2017. pp. 1930-34.

3. Jia F, Lei Y, Lin J, Zhou X, Lu N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process 2016;72-3:303-15.

4. Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process 2018;100:743-65.

5. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-57.

6. Jia F, Lei Y, Lu N, Xing S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech Syst Signal Process 2018;110:349-67.

7. Sun Y, Kamel MS, Wong AK, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 2007;40:3358-78.

8. Deng Y, Shichang D, Shiyao J, Chen Z, Zhiyuan X. Prognostic study of ball screws by ensemble data-driven particle filters. J Manuf Syst 2020;56:359-72.

9. Deng Y, Huang D, Du S, Li G, Zhao C, Lv J. A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis. Comput Ind 2021;127:103399.

10. Jia S, Deng Y, Lv J, Du S, Xie Z. Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines. Measurement 2022;187:110332.

11. Deng Y, Du S, Wang D, Shao Y, Huang D. A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines. IEEE Trans Instrum Meas 2023;72:1-15.

12. Deng Y, Lv J, Huang D, Du S. Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer. Neurocomputing 2023;548:126391.

13. Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.

14. Wang Z, Wang J, Wang Y. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. Neurocomputing 2018;310:213-22.

15. Lee YO, Jo J, Hwang J. Application of deep neural network and generative adversarial network to industrial maintenance: a case study of induction motor fault detection. In: 2017 IEEE international conference on big data (big data). 2017. pp. 3248-53.

16. Zhou F, Yang S, Fujita H, Chen D, Wen C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowl Based Syst 2020;187:104837.

17. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 2016. Available from: https://arxiv.org/abs/1511.06434 [Last accessed on 14 August 2023].

18. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. 2017. pp.214-23. Available from: https://arxiv.org/abs/1701.07875 [Last accessed on 14 August 2023].

19. Wen L, Li X, Gao L, Zhang Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Ind Electron 2018;65:5990-8.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/