REFERENCES
1. Sun K, Cui W, Chen C. Review of underwater sensing technologies and applications. Sensors 2021;21:7849.
2. Jiang Y, Zhao M, Zhao W, et al. Prediction of sea temperature using temporal convolutional network and lstm-gru network. Complex Eng Syst 2021;1:6.
3. Maamoun KSA, Karimi HR. Reinforcement learning-based control for offshore crane load-landing operations. Complex Eng Syst 2022;2:13.
4. Er MJ, Chen J, Zhang Y, Gao W. Research challenges, recent advances, and popular datasets in deep learning-based underwater marine object detection: a review. Sensors 2023;23:1990.
5. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86:2278-324.
6. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016;779-88.
7. Al Muksit A, Hasan F, Emon MFHB, Haque MR, Anwary AR, Shatabda S. Yolo-fish: a robust fish detection model to detect fish in realistic underwater environment. Ecol Inform 2022;72:101847.
9. Zhang M, Xu S, Song W, He Q, Wei Q. Lightweight underwater object detection based on YOLO v4 and multi-scale attentional feature fusion. Remote Sens 2021;13:4706.
10. Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934 2020.
11. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: inverted residuals and linear bottlenecks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. p. 4510-20.
12. Zhao S, Zheng J, Sun S, Zhang L. An improved YOLO algorithm for fast and accurate underwater object detection. Symmetry 2022;14:1669.
13. Peng F, Miao Z, Li F, Li Z. S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images. Expert Syst Appl 2021;182:115306.
14. Shang Y. Resilient multiscale coordination control against adversarial nodes. Energies 2018;11:1844.
15. Dai Y, Gieseke F, Oehmcke S, Wu Y, Barnard K. Attentional feature fusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021. p. 3560-9.
16. Liu K, Peng L, Tang S. Underwater object detection using TC-YOLO with attention mechanisms. Sensors 2023;23:2567.
17. Lei F, Tang F, Li S. Underwater target detection algorithm based on improved YOLOv5. J Mar Sci Eng 2022;10:310.
18. Li B, Liu B, Li S, Liu H. Underwater target detection based on improved YOLOv4. In: 2022 41st Chinese Control Conference (CCC), 2022 Jul 25-27; Hefei, China. 2022. p. 7012-7.
19. Ge H, Dai Y, Zhu Z, Zang X. Single-stage underwater target detection based on feature anchor frame double optimization network. Sensors 2022;22:7875.
20. Qi J, Gong Z, Xue W, Liu X, Yao A, Zhong P. An unmixing-based network for underwater target detection from hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021;14:5470-87.
21. Li C, Guo C, Ren W, et al. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 2020;29:4376-89.
22. Zhuang P, Wu J, Porikli F, Li C. Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans Image Process 2022;31:5442-55.
23. Tan M, Le QV. Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR, 2019, p. 6105-14.
24. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. p. 2117-25.
25. Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. p. 8759-68.
26. Liu C, Li H, Wang S, et al. A dataset and benchmark of underwater object detection for robot picking. In: 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China. 2021. p. 1-6.
27. Lin TY, Maire M, Belongie S, et al. Microsoft COCO: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors, Computer Vision - ECCV 2014, Springer, Cham; 2014. p. 740-55.
28. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neur Inf Process Sys 2015;28.
29. Cai Z, Vasconcelos N. Cascade R-CNN: delving into high quality object detection. In CVPR, 2018;6154-62.
30. Li C, Li L, Jiang H, et al. YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv: 2209.02976, 2022.
31. Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. p. 7464-75.
32. Girshick R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), 2015. p. 1440-8.
33. Lu X, Li B, Yue Y, Li Q, Yan J. Grid R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. p. 7363-72.
34. Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision - ECCV 2016. Springer, Cham; 2016. p. 21-37.
35. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2017. p. 2980-8.
36. Tian Z, Shen C, Chen H, He T. FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019. p. 9627-36.
37. Jocher G. YOLOv5 by Ultralytics, May 2020.
38. Ge Z, Liu S, Wang F, Li Z, Sun J. YOLOX: exceeding YOLO series in 2021. arXiv preprint arXiv: 2107.08430, 2021.
39. Lv W, Zhao Y, Xu S, et al. DETRs beat YOLOs on real-time object detection. arXiv preprint arXiv: 2304.08069, 2023.
40. Jocher G, Chaurasia A, Qiu J. YOLO by Ultralytics, January 2023.