REFERENCES
1. Liu H, Li Y, Tian X, Mai Q. Event-triggered predefined-time H∞ formation control for multiple underactuated surface vessels with error constraints and input quantization. Ocean Eng 2023;277:114294.
2. Liu H, Huang X, Mai Q, Tian X. Fixed-time self-structuring neural network fault-tolerant tracking control of underactuated surface vessels with state constraints. Ocean Eng 2023;279:114599.
3. González-Prieto JA. Adaptive finite time smooth nonlinear sliding mode tracking control for surface vessels with uncertainties and disturbances. Ocean Eng 2023;279:114474.
4. Zhu H, Yu H, Guo C. Finite time PAILOS based path following control of underactuated marine surface vessel with input saturation. ISA Trans 2023;135:66-77.
5. Meng XF, Zhang GC, Zhang Q. Robust adaptive neural integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs. Math Biosci Eng 2023;20:2131-56.
6. Xu SW, Wang XF, Yang JM, Wang L. A fuzzy rule-based PID controller for dynamic positioning of vessels in variable environmental disturbances. J Mar Sci Technol 2020;25:914-24.
7. Witkowska A, Tomera M, Smierzchalski R. A backstepping approach to ship course control. Int J Appl Math Comput Sci 2007;17:73-85.
8. Le MD, Nguyen TH, Nguyen TT, et al. A new and effective fuzzy PID autopilot for ships. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation; 2003 Jul 16-20; Kobe, Japan. IEEE; 2003. p. 1411-5.
9. Annamalai ASK, Sutton R, Yang C, Culverhouse P, Sharma S. Robust adaptive control of an uninhabited surface vehicle. J Intell Robot Syst 2015;78:319-38.
10. Yang YS. Output feedback robust control algorithm applied to ship steering autopilot with uncertain nonlinear system. J Traffic Transp Eng 2002;2: 118-121. Available from: https://transport.chd.edu.cn/en/article/id/200201026. [Last accessed on 24 Jul 2023].
11. Li YH, Qiang S, Zhuang XY, Kaynak O. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 2004;15:693-701.
12. Zhang GQ, Zhang XK. Concise robust adaptive path-following control of underactuated ships using DSC and MLP. IEEE J Ocean Eng 2014;39:685-94.
13. Lv MG, Peng ZH, Wang D, Han QL. Event-triggered cooperative path following of autonomous surface vehicles over wireless network with experiment results. IEEE Trans Ind Electron 2022;69:11479-89.
14. Song S, Zhang EH, Wang WK, Liu T. Distributed dynamic edge-based event-triggered formation control for multiple underactuated unmanned surface vessels. Ocean Eng 2022;264:112319.
15. Liu L, Zhang WD, Wang D, Peng ZH. Event-triggered extended state observers design for dynamic positioning vessels subject to unknown sea loads. Ocean Eng 2020;209:107242.
16. Zhang GQ, Gao S, Li JQ, Zhang WD. Adaptive neural fault-tolerant control for course tracking of unmanned surface vehicle with event-triggered input. Proc Inst Mech Eng Part Ⅰ J Syst Control Eng 2021;235:1594-604.
17. Zhang XK, Zhang Q, Ren HX, Yang GP. Linear reduction of backstepping algorithm based on nonlinear decoration for ship course-keeping control system. Ocean Eng 2018;147:1-8.
18. Zhang XK, Han X, Guan W, Zhang GG, Zhang GQ. Improvement of integrator backstepping control for ships with concise robust control and nonlinear decoration. Ocean Eng 2019;189:106349.
19. Zhang Q, Zhang M, Hu Y, Zhu G. Error-driven-based adaptive nonlinear feedback control of course-keeping for ships. J Mar Sci Technol 2021;26:357-67.
20. Zhang X, Yang G, Zhang Q, Zhang G. Improved concise backstepping control of course keeping for ships using nonlinear feedback technique. J Navig 2017;70:1401-14.
21. Zhang HG, Zhang XK, Bu RX. Active disturbance rejection control of ship course keeping based on nonlinear feedback and ZOH component. Ocean Eng 2021;233:109136.
22. Gao SH, Zhang XK. Course keeping control strategy for large oil tankers based on nonlinear feedback of swish function. Ocean Eng 2022;244:110385.
23. Ye J, Roy S, Godjevac M, Reppa V, Baldi S. Robustifying dynamic positioning of crane vessels for heavy lifting operation. IEEE/CAA J Autom 2021;8:753-765.
25. Xia G, Sun C, Zhao B, Xue J. Cooperative control of multiple dynamic positioning vessels with input saturation based on finite-time disturbance observer. Int J Control Autom Syst 2019;17:370-9.
26. Yu S, Yu X, Shirinzadeh B, Man Z. Continuous finite time control for robotic manipulators with terminal sliding mode. Automatica 2005;41:1957-64.
27. Zhang Q, Zhang MJ, Yang RM, Im N. Adaptive neural finite-time trajectory tracking control of MSVs subject to uncertainties. Int J Control Autom Syst 2019;19:2238-2250.