REFERENCES
1. Zhang HT, Yu T, Sang JP, Zou XW. Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks. Physica A: Statist Mech Appl 2014;393:590-9.
2. Eagle N, Pentland A. Reality mining: sensing complex social systems. Pers Ubiquit Comput 2005;10:255-68.
3. Pastor-Satorras R, Smith E, Solé R. Evolving protein interaction networks through gene duplication. J Theor Biol 2003;222:199-210.
6. Pinto ER, Nepomuceno EG, Campanharo AS. Individual-based modelling of animal brucellosis spread with the use of complex networks. IJNDI 2022;1:120-9.
8. Wa ng, X, Sun Y, Ding D. Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques. IJNDI 2022;1:85-98.
9. Huang C, Ho D, Lu JQ, Kurths J. Pinning synchronization in T-S fuzzy complex networks with partial and discrete-time couplings. IEEE Trans Fuzzy Syst 2015;23:1274-85.
10. Dong HL, Hou N, Wang ZD, Ren WJ. Variance-constrained state estimation for complex networks with randomly varying topologies. IEEE Trans Neural Netw Learn Syst 2018;29:2757-68.
11. Wang LC, Wang ZD, Huang TW, Wei GL. An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities. IEEE Trans Cybern 2016;46:2497-2508.
12. Yu WW, Chen GR, Lü JH, Kurths J. Synchronization via pinning control on general complex networks. SIAM J Control Optim 2013;51:1395-416.
13. Burbano-L. DA, Russo G, Bernardo M. Pinning controllability of complex network systems with noise. IEEE Trans Control Netw Syst 2019;6:874-83.
14. Wang J. Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control. J Frankl I 2017;354:1855.
15. Zhang XM, Han QL. Event-triggered H∞ control for a class of nonlinear networked control systems using novel integral inequalities. Int J Robust Nonlinear Control 2017;27:679-700.
16. Liu YF, Shen B, Zhang P. Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters. Neural Netw 2022;150:181-93.
17. Wan XB, Wang ZD, Han QL, Wu M. Finite-time H∞ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols. IEEE Trans Circuits Syst I 2018;65:3481-91.
18. Ramasamy S, Nagamani G, Zhu QX. Robust dissipativity and passivity analysis for discrete-time stochastic T–S fuzzy Cohen–Grossberg Markovian jump neural networks with mixed time delays. Nonlinear Dyn 2016;85:2777-99.
19. Neyir O. Stability analysis of Cohen–Grossberg neural networks of neutral-type: Multiple delays case. Neural Netw 2019;113:20-27.
20. Ma NN, Liu ZB, Chen L. Robust and non-fragile finite time H∞ synchronization control for complex networks with uncertain inner coupling. Comp Appl Math 2018;37:5395-409.
21. Liu D, Liu Y, Alsaadi FE. Recursive state estimation based on the outputs of partial nodes for discrete-time stochastic complex networks with switched topology. J Franklin I 2018;355:4707.
22. Hu J, Liu GP, Zhang HX, Liu HJ. On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism. Inf Sci 2020;511:283.
23. Li W, Jia YM, Du JP. Variance-constrained state estimation for nonlinearly coupled complex networks. IEEE Trans Cybern 2018;48:818-24.
24. Wang MY, Wang HY, Zheng HR. A mini review of node centrality metrics in biological networks. IJNDI 2022;1:99-110.
25. Liu HJ, Ge Y, Hou N, Li JH, Dong HL. Finite-horizon resilient state estimation for complex networks with integral measurements from partial nodes. Sci China Inf Sci 2022;65.
26. Yu LY, Liu YR, Cui Y, Alotaibi ND, Alsaadi FE. Intermittent dynamic event-triggered state estimation for delayed complex networks based on partial nodes. Neurocomputing 2021;459:59-69.
27. Hou N, Dong HL, Wang ZD, Liu HJ. A partial-node-based approach to state estimation for complex networks with sensor saturations under random access protocol. IEEE Trans Neural Netw Learn Syst 2021;11:5167-78.
28. Zou L, Wang ZD, Hu J, Dong HL. Partial-node-based state estimation for delayed complex networks under tntermittent measurement outliers: a multiple-order-holder approach. IEEE Trans Neural Netw Learn Syst 2022:1-15.
29. Liu YR, Wang ZD, Ma LF, Alsaadi FE. A partial-nodes-based information fusion approach to state estimation for discrete-time delayed stochastic complex networks. Inform Fusion 2019;48:240-8.
30. Zhang XM, Han QL. State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Trans Neural Netw Learn Syst 2018;29:1376-81.
31. Dolk VS, Tesi P, Persis CD, Heemels W. Event-triggered control systems under denial-of-service attacks. IEEE Trans Control Netw Syst 2017;4:93-105.
32. Chatterjee K, Singh VK, Prasun P, Kamal S, Ghosh S, Dinh TN. Fixed-time event-triggered control under denial-of-service attacks. Eur J Control 2022;32:1209-28.
33. Xiao HC, Wei GL, Ding DR, Dong HL. Adaptive event-triggered state estimation for large-scale systems subject to deception attacks. Sci China Inf Sci 2022;65.
34. Hou N, Wang ZD, Ho D, Dong HL. Robust partial-nodes-based state estimation for complex networks under deception attacks. IEEE Trans Cybern 2020;50:2793-802.
35. Geng S, Zhu C, Jin Y, Wang L, Tan H. Gaze control system for tracking Quasi-1D high-speed moving object in complex background. Syst Sci Control Eng 2022;10:367-76.
36. Wang D, Wang ZD, Shen B, Alsaadi FE. Security-guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks. Int J Robust Nonlinear Control 2017;27:1194-208.
37. Zhu MH, Martinez S. On the performance analysis of resilient networked control systems under replay attacks. IEEE Trans Automat Contr 2014;59:804-8.
38. Tao H, Tan H, Chen Q, Liu H, Hu J. H∞ state estimation for memristive neural networks with randomly occurring DoS attacks. Syst Sci Control Eng 2022;10:154-65.
39. Deng YH, Mo ZK, Lu HQ. Robust H∞ state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks. Chinese Phys B 2022;31.
40. Sun J, Shen B, Liu YR, Alsaadi FE. Dynamic event-triggered state estimation for time-delayed spatial-temporal networks under encodingdecoding scheme. Neurocomputing 2022;500:868-76.
41. Li N, Li Q, Suo JH. Dynamic event-triggered H∞ state estimation for delayed complex networks with randomly occurring nonlinearities. Neurocomputing 2021;421:97-104.
42. H an, Z C, Zhang SB, Jin ZW, Hu YY. Secure state estimation for event-triggered cyber-physical systems against deception attacks. J Franklin I 2022;359:11155-85.
43. Lin N, Chen DY, Hu J, Jia CQ. Partial-nodes-based state estimation for stochastic coupled complex networks with random sensor delay: an event-triggered communication method. Circuits Syst Signal Process 2022;29:3726-37.
44. Liu Jl, Cao J, Wu Z, Qi Q. State estimation for complex systems with randomly occurring nonlinearities and randomly missing measurements. Int J Syst Sci 2014;45:1364-74.
45. Liu JL, Liu QH, Cao J, Zhang YY. Adaptive event-triggered H∞ filtering for T–S fuzzy system with time delay. Neurocomputing 2016;189:86-94.
46. Guan ZH, Chen CY, Feng G, Li T. Optimal tracking performance limitation of networked control systems with limited bandwidth and additive colored white Gaussian noise. IEEE Trans Circuits Syst I 2013;60:189-198.