REFERENCES
1. Panahandeh P, Alipour K, Tarvirdizadeh B, Hadi A. A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile robots. Mech Syst Signal Pr 2019;134:1-19.
2. Huang H, Li Y, Bai Q. An improved a star algorithm for wheeled robots path planning with jump points search and pruning method. Complex Eng Syst 2022;2:11.
3. Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. In: Proceedings., IEEE International Conference on Robotics and Automation; 1990;1. pp. 384-89.
4. Fierro R, Lewis F. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of 1995 34th IEEE Conference on Decision and Control; 1995;4. pp. 3805-10.
5. Bloch A. Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics New York, NY: Springer; 2003.
6. Murray R, Sastry S. Nonholonomic motion planning: steering using sinusoids. IEEE Trans Automat Contr 1993;38:700-16.
7. Tayebi A, Tadjine M, Rachid A. Invariant manifold approach for the stabilization of nonholonomic chained systems: Application to a mobile robot. Nonlinear Dynam 2001;24:167-81.
8. Wang X, Zhang G, Neri F, et al. Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr Comput-Aid E 2016;23:15-30.
9. Zhai J, Song Z. Adaptive sliding mode trajectory tracking control for wheeled mobile robots. Int J Control 2019;92:2255-62.
10. Ou M, Sun H, Zhang Z, Li L. Fixed-time trajectory tracking control for multiple nonholonomic mobile robots. T I Meas Control 2021;43:1596-608.
11. Li B, Zhang H, Xiao B, Wang C, Yang Y. Fixed-time integral sliding mode control of a high-order nonlinear system. Nonlinear Dynam 2022;107:909-20.
12. Liu Q, Cai Z, Chen J, Jiang B. Observer-based integral sliding mode control of nonlinear systems with application to single-link flexible joint robotics. Complex Eng Syst 2021;1:8.
13. Zhang Z, Leibold M, Wollherr D. Integral sliding-mode observer-based disturbance estimation for euler–lagrangian systems. IEEE Trans Contr Syst T 2020;28:2377-89.
14. Li B, Hu Q, Yang Y. Continuous finite-time extended state observer based fault tolerant control for attitude stabilization. Aerosp Sci Technol 2019;84:204-13.
15. Zhang H, Li B, Xiao B, Yang Y, Ling J. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot. ISA T 2022;130:553-64.
16. Chevillard S. The functions erf and erfc computed with arbitrary precision and explicit error bounds. Inform Comput 2012;216:72-95.
17. Eltayeb A, Rahmat M, Basri MAM, Mahmoud MS. An improved design of integral sliding mode controller for chattering attenuation and trajectory tracking of the quadrotor UAV. Arab J Sci Eng 2020;45:6949-61.
18. Ba D, Li Y, Tong S. Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems. Neurocomputing 2019;363:273-80.
19. Bagul Y, Chesneau C. Sigmoid functions for the smooth approximation to the absolute value function. MJPAA 2021;7:12-19.
21. Jiang Z, Nijmeijer H. Tracking control of mobile robots: A case study in backstepping. Automatica 1997;33:1393-99.
22. Wang C, Wen G, Peng Z, Zhang X. Integral sliding-mode fixed-time consensus tracking for second-order non-linear and time delay multi-agent systems. J Franklin I 2019;356:3692-710.
23. Plestan F, Shtessel Y, Brégeault V, Poznyak A. New methodologies for adaptive sliding mode control. Int J Control 2010;83:1907-19.
24. Song T, Fang L, Wang H. Model‐free finite‐time terminal sliding mode control with a novel adaptive sliding mode observer of uncertain robot systems. Asian J of Control 2022;24:1437-51.
25. Li B, Gong W, Yang Y, Xiao B, Ran D. Appointed fixed time observer-based sliding mode control for a quadrotor UAV under external disturbances. IEEE Trans Aero Elec Sys 2022;58:290-303.