REFERENCES
1. Zhao Y, Wang H, Xu N, Zong G, Zhao X. Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems. Chaos, Solitons & Fractals 2023;167:113034.
2. Tang F, Niu B, Zong G, Zhao X, Xu N. Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning. Neural Netw 2022;154:43-55.
3. Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484-9.
4. Gunning D, Aha D. DARPA’s explainable artificial intelligence (XAI) program. AIMag 2019;40:44-58.
6. Castro JL. Fuzzy logic controllers are universal approximators. IEEE Trans Syst, Man, Cybern 1995;25:629-35.
8. Coleman CP, Godbole D. A comparison of robustness: fuzzy logic, PID, and sliding mode control. In: Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference. IEEE; 1994. pp. 1654–59.
11. Ernest ND. Genetic fuzzy trees for intelligent control of unmanned combat aerial vehicles. University of Cincinnati; 2015.
12. Herrera F. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intel 2008;1:27-46.
13. Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA): pilot data and proof-of-concept. Bipolar Disord 2017;19:259-72.
14. Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions. J Def Manag 2016;6:2167-0374.
15. Thales. Thales GFT AI Toolkit. Thales; 2022. Available from: https://www.thalesgroup.com/en/markets/aerospace/big-data-aerospace/genetic-fuzzy-tree-ai-toolkit-critical-decisions. [Last accessed on 20 Mar 2023].
16. Marques-Silva J. Practical applications of boolean satisfiability. In: 2008 9th International Workshop on Discrete Event Systems. IEEE; 2008. pp. 74–80.
18. Ernest N, Kunkel B, Arnett T. An investigation into the impact of system transparency on work flows of fuzzy tree based AIs. In: North American Fuzzy Information Processing Society Annual Conference. Springer; 2020. pp. 349–59.
19. Moura Ld, Bjørner N. Z3: An efficient SMT solver. In: International conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer; 2008. pp. 337–40.
20. Gacek A, Backes J, Whalen M, Wagner L, Ghassabani E. The JKind model checker. In: International Conference on Computer Aided Verification. Springer; 2018. pp. 20–27.
21. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Studies 1975;7:1-13.
22. Scapin D, Cisotto G, Gindullina E, Badia L. Shapley Value as an Aid to Biomedical Machine Learning: a Heart Disease Dataset Analysis. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid) 2022: 933–39.
23. Heuillet A, Couthouis F, Díaz-Rodríguez N. Collective EXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning With Shapley Values. IEEE Comput Intell Mag 2022;17:59-71.
24. Burnysc2. Burnysc2 python-SC2 Python Package. Github; 2022. Available from: https://github.com/BurnySc2/python-sc2. [Last accessed on 20 Mar 2023].
25. Wikipedia. Progress in artificial intelligence. Wikimedia Foundation; 2022. Available from: https://en.wikipedia.org/wiki/Progress_in_artificial_intelligence#Current_performance. [Last accessed on 20 Mar 2023].