REFERENCES

1. Wang B. Analysis of greenhouse gas emissions from water transport of cargo ships. Low Carbon World 2016;30:229-30. (In Chinese)

2. Hmam S, Olivier JC, Bourguet S, Loron L, Bernard N, Schaeffer E. A cycle-based formulation for the simulation of multi time-scale systems - application to the modeling of the storage system of a fully electric ferry. Math Comput Simul 2019;158:403-17.

3. Hamburg harbor port. Available from: https://www.hafen-hamburg.de/cn/homepage/ [Last accessed on 31 Jan 2023].

4. Ningbo Zhoushan harbor port. Available from: http://www.portzhoushan.com/detail/?key=00100&id=4742 [Last accessed on 31 Jan 2023].

5. Fang S, Wang Y, Gou B, Xu Y. Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships. IEEE Trans Veh Technol 2019;69:207-219.

6. Kumar J, Kumpulainen L, Kauhaniemi K. Technical design aspects of harbour area grid for shore to ship power: state of the art and future solutions. Electr Power Energy Syst 2019;104:840-52.

7. Eleftherios S, Maria B, Alkiviadis T, Nikolaos A. Energy efficiency in european ports: state-of-practice and insights on the way forward. Sustainability 2019;11:4952.

8. Sadeghi D, Amiri N, Marzband M, Abusorrah A, Sedraoui K. Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles. Int J Energy Res 2022;46.

9. Iris C, Lam JSL. A review of energy efficiency in ports: operational strategies, technologies and energy management systems. Renew Sustain Energy Rev 2019;112:170-82.

10. Parise G, Parise L, Martirano L, Chavdarian PB, Su CL, Ferrante A. Wise port and business energy management: port facilities, electrical power distribution. IEEE Tran Ind Applicat 2016;52:18-24.

11. Kumar J, Palizban O, Kauhaniemi K. Designing and analysis of innovative solutions for harbour area smart grid. In 2017 IEEE Manchester PowerTech. 2017.

12. Chen JD, Wang J. Development status, trends and prospect of offshore wind power in some foreign countries. World Sci-Tech R&D 2014;36:458-64. (In Chinese)

13. Luo K, Guo JB, Ma SC, Wang TZ. Review of key technologies of reliability analysis and improvement for offshore wind power grid integration. Power Syst Technol 2022;46:3691-3703. (In Chinese)

14. Ge C, Yan J, Liu YQ, Lu ZX. Review of key technologies for operation control and maintenance of offshore wind farm. SCEE 2022;42:4278-92. (In Chinese)

15. Li BB, Wang N, Zhao XD, Xu DG. Flexible converter high voltage large capacity DC transformer for all DC offshore wind farms. Autom Electric Power Syst 2022:1-16. (In Chinese)

16. Agrawal KK, Jha SK, Mittal RK, Vashishtha S. Assessment of floating solar PV (FSPV) potential and water conservation: case study on Rajghat Dam in Uttar Pradesh, India. Energy Sustain Dev 2022;66:287-95.

17. Trapani K, Redón Santafé M. A review of floating photovoltaic installations: 2007-2013. Prog Photovoltaics 2015;23:524-32.

18. Oliveira-Pinto S, Stokkermans J. Marine floating solar plants: an overview of potential, challenges and feasibility. Maritime Eng 2020;173:1-39.

19. Sahu A, Yadav N, Sudhakar K. Floating photovoltaic power plant: a review. Renew Sustain Energy Rev 2016;66:815-24.

20. Ning YT, Li XJ, Dong DH, Jia XC, Hui D. A review of the research methods of smoothing wind/PV power output with energy storage systems. Distrib Utilizat 2017;34:2-11. (In Chinese)

21. Zhao Y, Cui Y. Analysis of optimal design of energy storage configuration based on distributed pv system. In Chinese Society For Environmental Sciences 2022 Annual Conference On Science And Technology. 2022. (In Chinese).

22. Gao XT, Qin ZL, Gao XY. Reliability evaluation of multi-energy generation and transmission system with offshore wind power-photovoltaic-energy storage. Power Gen Technol 2022;43:626-35. (In Chinese)

23. Sun YH, Zhao SY, Zhang XL, Han YQ, Zhang HR. Distributed energy storage coordinated operation strategy for improving voltage stability of regional power grid. Renew Energy Resour 2022;40:1115-22. (In Chinese)

24. Zhu LJ, Yu ZY. Coordinated control strategy of photovoltaic microgrid based on hybrid energy storage. Electric Eng 2022;20:45-8. (In Chinese)

25. Shao SH, Yin FY, Li HJ. Research on control strategy of DC photovoltaic energy storage system. Electric Mater 2022;04:15-9. (In Chinese)

26. Karimi S, Zadeh M, Suul JA. Shore charging for plug-in battery-powered ships: power system architecture, infrastructure, and control. IEEE Electrific Mag 2020;8:47-61.

27. Dragicevic T, Lu X, Vasquez JC, Guerrero JM. DC Microgrids-Part II: a review of power architectures, applications and standardization issues. IEEE Trans Power Electr 2015;3:1.

28. Yu H, Niu SY, Zhang YM. An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings. Appl Energy 2020:263.

29. Yu H, Niu S, Shao Z, Jian L. A scalable and reconfigurable hybrid ac/dc microgrid clustering architecture with decentralized control for coordinated operation. Int J Electr Power Energy Syst 2022:135.

30. Xu WD, Luo J, Fan WW. Capacity planning of grid-connected PV-and-storage microgrid under uncertainty. Syst Eng Theory Pract 2022;42:981-1000. (In Chinese)

31. Wang F, Li H, Yang L, Zhu Yi. Capacity planning method for flexible DC power grid considering access of large-scale new energy. CSU-EPSA 2018;30:53-59. (In Chinese)

32. Ju YT, Li HQ, Yu ZM, Liang Y, Zheng LY. Bi-level robust capacity planning of micro-grid considering multivariate uncertainties and reserve demand. Power Syst Technol ;2022:1-20. (In Chinese)

33. Zhong W, Kong FQ, Lin XJ, et al. Two-stage planning method of microgrid capacity considering dynamic weighting of typical day characteristics. Energy Eng 2022;42:90-8. (In Chinese)

34. Guo L, Yang SQ, Liu YX, et al. Typical day selection method for capacity planning of microgrid with wind turbine-photovoltaic and energy storage. CSEE 2020;40:2468-79. (In Chinese)

35. Khlifi F, Cherif H, Belhadj J. Sizing and multi-objective optimization of a multisource micro-grid with storage for an economic activity zone. In 2019 International Conference on Advanced Systems and Emergent Technologies. 2019.

36. Parise G, Parise L, Pepe FM, Ricci S, Chavdarian P. Innovations in a container terminal area and electrical power distribution for the service continuity. In Industrial & Commercial Power Systems Technical Conference. 2016.

37. Gennitsaris SG, Kanellos FD. Emission-aware and cost-effective distributed demand response system for extensively electrified large ports. IEEE Trans Power Syst 2019;34:4341-51.

38. Gutierrez-romero JE, Esteve-pérez J, Zamora B. Implementing onshore power supply from renewable energy sources for requirements of ships at berth. Appl Energy 2019;255:113883.

39. Kotrikla AM, Lilas T, Nikitakos N. Abatement of air pollution at an aegean island port utilizing shore side electricity and renewable energy. Marine Policy 2017;75:238-8.

40. Ahamad NB, Othman M, Vasquez JC, Guerrero JM, Su CL. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports. In 2018 IEEE International Conference on Industrial Technology (ICIT). 2018.

41. Wang W, Peng Y, Li X, Qi Q, Feng P, Zhang Y. A two-stage framework for the optimal design of a hybrid renewable energy system for port application. Ocean Eng 2019;191:106555.

42. Kumar J, Parthasarathy C, Västi M, Laaksonen H, Shafie-Khah M, Kauhaniemi K. Sizing and allocation of battery energy storage systems in land islands for large-scale integration of renewables and electric ferry charging stations. Energies 2020;13:317.

43. Zhong CY, Gui QJ, Jiang QJ, et al. Data-driven Distributed Voltage Control for High-penetration Renewable Power Clusters Without Complete Model. J Glob Energy Int 2022;5:251-60. (In Chinese)

44. Li CP, Dong ZM, Lin JH, et al. Optimal control strategy of distributed energy storage cluster for prompting renewable energy accomodation in distribution network. Autom Electr Power Syst 2021;45:76-83. (In Chinese)

45. Dong XW, Pei CC, Deng W, Li B, Dai H. Research on control strategy of distributed energy storage system in distribution network with new energy. Electr Power Construct 2021;42:81-9. (In Chinese)

46. Ma HN, Wang LY, Qiu C, et al. Research on distributed control of multiple energy storage systems with different SOC in DC microgrid. Electr Power Construct 2022;43:87-95. (In Chinese)

47. Liu S. Study on distributed control of voltage and current in DC micro-grid. Electr Drive 2022;52:29-34. (In Chinese)

48. Yang YS, Niu XR, Li LX, et al. Design of port distributed lighting control system based on RT-Thread. Port Sci Technol 2022:13-7. (In Chinese)

49. He GJ, Lv CX, Shi FJ, et al. Design on port intelligent lighting control system based on WINCC. Port Oper 2018:6-8. (In Chinese)

50. Li BC, Zhang XY, Chen MY. A new operation strategy of optical storage microgrid based on demand side response. Electr Test 2020:36-9. (In Chinese)

51. Roy A, Auger F, Olivier JC, Schaeffer E, Auvity B. Design, sizing, and energy management of microgrids in harbor areas: a review. Energies 2020;13:5314.

52. Chen JC, Cai ZX, Ma GL. Power capacity optimization of islanded microgrid considering uncertainty oupling and load demand management. South Power Syst Technol 2020;14:46-55. (In Chinese)

53. Hu NE, Jiang YQ, Shen YT, Yang XX, Wang ZH. Two-stage day-ahead energy management strategy for microgrid with photovoltaic energy storage. Mod Electr Power 2022:1-9. (In Chinese)

54. Huang ZH, Zhang YC, Zheng F, Lin JH, An XL, Shi H. Day-ahead and real-time energy management for active distribution network based on coordinated optimization of different stakeholders. Power Syst Technol 2021;45:2299-308. (In Chinese)

55. Sun FZ, Ma JC, Yu Miao, Yu M, Wei W. A day-ahead and intraday coordinated energy management method for active distribution networks based on multi-terminal flexible distribution switch. CSEE 2020;40:778-90. (In Chinese)

56. Xiao F, Ai Q. Multiple time-scale optimal dispatch of demand response resource for microgrid based on model predictive control. Electr Power Autom Equip 2018;38:184-90. (In Chinese)

57. Gong YF, Lu ZX, Qiao Y, Wang Q, Cao X. Copula theory based machine identification algorithm of high proportion of outliers in photovoltaic power date. Autom Electr Power Syst 2016;40:48-55. (In Chinese)

58. Bao YQ, Wang BB, Li Y, Yang SC. Rolling dispatch model considering wind penetration and multi-scale demand response resources. CSEE 2016;36:4589-600. (In Chinese)

59. Ma J, Chen HH, Song L, Li Y. Residential load scheduling in smart grid: a cost efficiency perspective. IEEE Trans Smart Grid 2016;7:771-84.

60. Arun SL, Selvan MP. Dynamic demand response in smart buildings using an intelligent residential load management system. IET Gener Transm Distrib 2017;11:4348-57.

61. Ye F, Qian Y, Hu RQ. A real-time information based demand-side management system in smart grid. IEEE Trans Parallel Distrib Syst 2016;27:329-39.

62. Jurong harbor port. Available from: https://baike.baidu.com/item/%E8%A3%95%E5%BB%8A%E6%B8%AF/3051430?fr=aladdin 2022 [Last accessed on 31 Jan 2023].

63. Offshore floating photovoltaic Power Station (Bellini). Available from: https://baijiahao.baidu.com/s?id=1709751573887040158&wfr=spider&for=pc, 2022 [Last accessed on 31 Jan 2023].

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/