REFERENCES
1. Bertin E, Hérissé B, dit Sandretto JA, Chapoutot A. Spatio-temporal constrained zonotopes for validation of optimal control problems. In: CDC 2021: 60th Conference on Decision and Control Dec 2021, Austin, United States. Available from: https://hal.archives-ouvertes.fr/hal-03197925 [Last accessed on 17 Jun 2022].
2. Scott JK, Raimondo DM, Marseglia GM, Braatz RD. Constrained zonotopes: A new tool for set-based estimation and fault detection. Automatica 2016;69:126-36.
3. Rego BS, Raffo GV, Scott JK, Raimondo DM. Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems. Automatica 2020:111.
4. Combastel C. Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence. Automatica 2015;55:265-273.
5. Jianwang H, Ramirez-Mendoza RA. Zonotope parameter identification for piecewise affine system. Syst Sci Control Eng 2020;8:232-40.
6. Wang Y, Puig V, Cembran G. Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems. Automatica 2018;93:435-43.
7. Zhang W, Wang Z, Raissi T, Dinh TN, Dimirovski G. Zonotope-based interval estimation for discrete-time linear switched systems. In: 21st IFAC World Congress, Berlin, Germany, 2020. Available from: https://hal-cnam.archives-ouvertes.fr/hal-02516156 [Last accessed on 17 Jun 2022].
8. Zhou M, Cao Z, Zhou M, Wang J, Wang Z. Zonotoptic fault estimation for discrete-time LPV systems with bounded parametric un-certainty. Trans Intell Transport Syst 2020;21:690-700.
9. Fogel E, Huang YF. On the value of information in system identification-bounded noise case. Automatica 1982;18:229-38.
10. Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models. IEEE Trans Automat Control 1982;27:408-13.
11. Walter E, Piet-Lahanier H. Exact and recursive description of the feasible parameter set for bounded error models. In: 26th IEEE Conference on Decision and Control. IEEE 1987;26: 1921-22.
12. Mo SH, Norton JP. Fast and robust algorithm to compute exact polytope parameter bounds. Math Comput Simul 1990;32:481-93.
13. Casini M, Garulli A, Vicino A. A constraint selection technique for recursive set membership identification. IFAC Proceedings 2014;47:1790-5.
14. Milanese M, Norton JP, Piet-Lahanier H, Walter E. Bounding approches to system identification. Springer Science & Business Media, 2013. Available from: https://link.springer.com/book/10.1007/978-1-4757-9545-5 [Last accessed on 17 Jun 2022].
15. Clement T, Gentil S. Reformulation of parameter identification with unknown-but-bounded errors. Math Comput Simul 1988;30:257-70.
16. Norton JP. Identification of parameter bounds for ARMAX models from records with bounded noise. Int J Control 1987;45:375-90.
17. Belforte G, Bona B, Cerone V. Parameter estimation algorithm for a set-membership description of uncertainty. Automatica 1990;26:887-98.
18. Jaulin L, Walter E. Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 1993;29:1053-64.
19. Bravo JM, Alamo T, Camacho EF. Bounded error identification of systems with time-varying parameters. IEEE Trans Automat Control 2006;51:1144-50.
21. Fernández-Cantí RM, Blesa J, Puig V, Tornil-Sin S. Set-membership identification and fault detection using a bayesian framework. Int J Syst Sci 2016;47:1710-24.
22. Valero CE, Villanueva ME, Houska B, Paulen R. Set-based state estimation: a polytopic approach. IFAC-PapersOnLine 2020;53:11277-82.
23. Lu QH, Fergani S, Jauberthie C. A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter. IFAC-PapersOnLine 2021;54:292-7.
24. Ploix S, Adrot O, Ragot J. Parameter uncertainty computation in static linear models. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304). IEEE 1999;2:1916-21.
25. Ragot J, Maquin D, Adrot O. Parameter uncertainties characterisation for linear models. IFAC Proceedings Volumes 2006;39:581-6.
26. Neumaier A. Interval methodsfor systems of equations Cambridge: Cambridge University Press; 1990.
27. Lasserre JB. An analytical expression and an algorithm for the volume of a convex polyhedron. J Optim Theory Appl 1983;39:363-77.
28. Aderemi AO, Olusola AA. A new approach for kuhn-tucker conditions to solve quadratic programming problems with linear inequality constraints. Math Comput Sci 2020;5:86-92.
29. Gill PE, Murray W, Wright MH. Pratical Optimization. Society for Industrial and Applied Mathematics 2019.
30. Seladji Y, Qu Z. International Journal of Computer Mathematics: Computer Systems Theory. Society for Industrial and Applied Mathematics 2018;3:215-29.