REFERENCES
1. Lapierre L, Zapata R, Lepinay P. Combined path-following and obstacle avoidance control of a wheeled robot. Int J Rob Res 2007;26:361-75.
2. Diveev A, Konstantinov S. Study of the practical convergence of evolutionary algorithms for the optimal program control of a wheeled robot. J Comput Syst Sci Int 2018;57:561-80.
3. Kashyap AK, Pandey A. Different nature-inspired techniques applied for motion planning of wheeled robot: a critical review. Int J Adv Robot Autom 2018;3:1-10.
5. Bontikous S, Guérin A, Postaire M, et al. A drug storage delivery robot in a cold room: a new feature to consider. J Pharm Clin 2019;38:24-26.
6. Luo RC, Lin TY, Su KL. Multisensor based security robot system for intelligent building. Robotics and Autonomous Systems 2009;57:330-38.
7. Dong F, Fang S, Xu Y. Design and implementation of security robot for public safety. In: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). IEEE; 2018. pp. 446-49.
8. Belanche D, Casaló LV, Flavián C, Schepers J. Service robot implementation: a theoretical framework and research agenda. The Service Industries Journal 2020;40:203-25.
9. Baraka K, Veloso MM. Mobile service robot state revealing through expressive lights: formalism, design, and evaluation. Int J of Soc Robotics 2018;10:65-92.
10. Patle B, Pandey A, Parhi D, et al. A review: on path planning strategies for navigation of mobile robot. Defence Technology 2019;15:582-606.
12. Ghosh S, Panigrahi PK, Parhi DR. Analysis of FPA and BA meta-heuristic controllers for optimal path planning of mobile robot in cluttered environment. IET Science, Measurement & Technology 2017;11:817-28.
13. Zhang L, Li Y. Mobile robot path planning algorithm based on improved A star. In: Journal of Physics: Conference Series. vol. 1848. IOP Publishing; 2021. p. 012013.
14. Kuswadi S, Santoso JW, Tamara MN, Nuh M. Application SLAM and path planning using A-star algorithm for mobile robot in indoor disaster area. In: 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA). IEEE; 2018. pp. 270-74.
15. Likhachev M, Koenig S. A generalized framework for lifelong planning A* search. In: ICAPS; 2005. pp. 99-108.
16. Ogata K. A generic approach on how to formally specify and model check path finding algorithms: dijkstra, A* and LPA*. Int J Soft Eng Knowl Eng 2020;30:1481-523.
17. Likhachev M, Gordon GJ, Thrun S. ARA: formal analysis 2003. Available from: http://www.cs.cmu.edu/afs/cs/Web/People/maxim/files/ara_tr.pdf.
18. Likhachev M, Gordon GJ, Thrun S. ARA*: anytime A* with provable bounds on sub-optimality. Available from: https://www.ri.cmu.edu/publications/ara-anytime-a-with-provable-bounds-on-sub-optimality/.
19. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S. Anytime motion planning using the RRT. In: 2011 IEEE International Conference on Robotics and Automation. IEEE; 2011. pp. 1478-83.
20. Agarwal S, Gaurav AK, Nirala MK, Sinha S. Potential and sampling based rrt star for real-time dynamic motion planning accounting for momentum in cost function. In: International Conference on Neural Information Processing. Springer; 2018. pp. 209-21.
21. Park JK, Chung TM. Boundary-RRT* algorithm for drone collision avoidance and interleaved path re-planning. J Infn Pro Syst 2020;16:1324-42.
22. Zhang D, Xu Y, Yao X. An Improved path planning algorithm for unmanned aerial vehicle based on rrt-connect. In: 2018 37th Chinese Control Conference (CCC). IEEE; 2018. pp. 4854-58.
23. Li S, Zhao D, Sun Y, Yang J, Wang S. Path planning algorithm based on the improved RRT-connect for home service robot arms. In: 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR). IEEE; 2021. pp. 403-7.
24. Song B, Wang Z, Zou L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Applied Soft Computing 2021;100:106960.
25. Lamini C, Benhlima S, Elbekri A. Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Computer Science 2018;127:180-89.
26. Konatowski S, Pawlowski P. Application of the ACO algorithm for UAV path planning. Przeglad Elektrotechniczny 2019;95:115-18.
27. Wang H, Qi X, Lou S, et al. An efficient and robust improved A* algorithm for path planning. Symmetry 2021;13:2213.
28. Song Z, Yuan L. Application of improved A algorithm in mobile robot path planning. In: 2019 3rd International Symposium on Autonomous Systems (ISAS); 2019. pp. 534-37.
29. Zhang H, Wang Y, Zheng J, Yu J. Path planning of industrial robot based on improved RRT algorithm in complex environments. IEEE Access 2018;6:53296-306.
30. Harabor D, Grastien A. Improving jump point search. In: Proceedings of the International Conference on Automated Planning and Scheduling. vol. 24; 2014. pp. 128-35. Available from: https://www.semanticscholar.org/paper/Improving-Jump-Point-Search-HaraborGrastien/f4b9b6355077685a033d38dd2392684a10fa4db6.
31. Zheng X, Tu X, Yang Q. Improved JPS algorithm using new jump point for path planning of mobile robot. In: 2019 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE; 2019. pp. 2463-68.
32. Webb J. A straight line is the shortest distance between two points. The Mathematical Gazette 1974;58:137-38.
33. Wang KHC, Botea A. Tractable multi-agent path planning on grid Maps. In: IJCAI. vol. 9. Pasadena, California; 2009. pp. 1870-75. Available from: https://www.ijcai.org/Proceedings/09/Papers/310.pdf.