REFERENCES

1. Alzheimer’s Association. 2024 Alzheimer’s disease facts and figures. Available from: https://wehco.media.clients.ellingtoncms.com/news/documents/2024/03/19/Alzheimers_report.pdf. [Last accessed on 27 Apr 2025].

2. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26:S177-83.

3. Deschaintre Y, Richard F, Leys D, Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73:674-80.

4. Rasmussen J, Langerman H. Alzheimer’s disease - Why we need early diagnosis. Degener Neurol Neuromuscul Dis. 2019;9:123-30.

5. Ittner LM, Götz J. Amyloid-β and tau - a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci. 2011;12:65-72.

6. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82:756-71.

7. Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer’s disease. Biol Psychiatry. 2018;83:300-10.

8. Sochocka M, Zwolinska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol. 2017;15:996-1009.

9. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58:1-15.

10. Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res. 2022;38:223-44.

11. Ranganathan R, Sapozhnikov G, Ni W, Li S, Song Y. Recent developments in the role of DNA damage response and understanding its implications for new therapeutic approaches in Alzheimer’s disease. Transl Med Aging. 2023;7:52-65.

12. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018;4:575-90.

13. Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci. 2018;38:2911-9.

14. Hiscox LV, Johnson CL, McGarry MDJ, et al. Mechanical property alterations across the cerebral cortex due to Alzheimer’s disease. Brain Commun. 2020;2:fcz049.

15. Feigin VL, Roth GA, Naghavi M, et al; Global Burden of Diseases, Injuries and Risk Factors Study 2013 and Stroke Experts Writing Group. Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913-24.

16. Monteiro F, Sotiropoulos I, Carvalho Ó, Sousa N, Silva FS. Multi-mechanical waves against Alzheimer’s disease pathology: a systematic review. Transl Neurodegener. 2021;10:36.

17. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9:2336.

18. Rezai AR, Ranjan M, D’Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc Natl Acad Sci U S A. 2020;117:9180-2.

19. Levy Nogueira M, Epelbaum S, Steyaert JM, Dubois B, Schwartz L. Mechanical stress models of Alzheimer’s disease pathology. Alzheimers Dement. 2016;12:324-33.

20. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994;57:419-25.

21. DeKosky ST, Abrahamson EE, Ciallella JR, et al. Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans. Arch Neurol. 2007;64:541-4.

22. Graham DI, Gentleman SM, Nicoll JAR, et al. Altered β-APP metabolism after head injury and its relationship to the aetiology of Alzheimer’s disease. In: Baethmann A, Kempski OS, Plesnila N, Staub F, editors. Mechanisms of secondary brain damage in cerebral ischemia and trauma. Vienna: Springer; 1996. pp. 96-102.

23. Zanier ER, Zoerle T, Fiorini M, et al. Heart-fatty acid-binding and tau proteins relate to brain injury severity and long-term outcome in subarachnoid haemorrhage patients. Br J Anaesth. 2013;111:424-32.

24. Cribbs DH, Chen LS, Cotman CW, LaFerla FM. Injury induces presenilin-1 gene expression in mouse brain. Neuroreport. 1996;7:1773-6.

25. Iwata A, Chen XH, McIntosh TK, Browne KD, Smith DH. Long-term accumulation of amyloid-beta in axons following brain trauma without persistent upregulation of amyloid precursor protein genes. J Neuropathol Exp Neurol. 2002;61:1056-68.

26. Sivanandam TM, Thakur MK. Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36:1376-81.

27. Russell ER, Mackay DF, Lyall D, et al. Neurodegenerative disease risk among former international rugby union players. J Neurol Neurosurg Psychiatry. 2022;93:1262-8.

28. Arena JD, Smith DH, Lee EB, et al. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer’s disease. Brain. 2020;143:1572-87.

29. Pearce AJ, Sy J, Lee M, et al. Chronic traumatic encephalopathy in a former Australian rules football player diagnosed with Alzheimer’s disease. Acta Neuropathol Commun. 2020;8:23.

30. Mackay DF, Russell ER, Stewart K, MacLean JA, Pell JP, Stewart W. Neurodegenerative disease mortality among former professional soccer players. N Engl J Med. 2019;381:1801-8.

31. Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics 2015;12:143-50.

32. Stone J, Johnstone DM, Mitrofanis J, O’Rourke M. The mechanical cause of age-related dementia (Alzheimer’s disease): the brain is destroyed by the pulse. J Alzheimers Dis. 2015;44:355-73.

33. Wostyn P, Audenaert K, De Deyn PP. Alzheimer’s disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg. 2008;110:101-9.

34. Levy Nogueira M, Hamraz M, Abolhassani M, et al. Mechanical stress increases brain amyloid β, tau, and α-synuclein concentrations in wild-type mice. Alzheimers Dement. 2018;14:444-53.

35. Prevost TP, Jin G, de Moya MA, Alam HB, Suresh S, Socrate S. Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomater. 2011;7:4090-101.

36. Cullimore B, Baumann J, Rudzitis CN, Jo AO, Kirdajova D, Križaj D. Mechanotransduction mechanisms in central nervous system glia. Neural Regen Res. 2023;18:1031-2.

37. Stukel JM, Willits RK. Mechanotransduction of neural cells through cell-substrate interactions. Tissue Eng Part B Rev. 2016;22:173-82.

38. Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett. 2020;717:134673.

39. Turovsky EA, Braga A, Yu Y, et al. Mechanosensory signaling in astrocytes. J Neurosci. 2020;40:9364-71.

40. Rosso G, Wehner D, Schweitzer C, et al. Matrix stiffness mechanosensing modulates the expression and distribution of transcription factors in Schwann cells. Bioeng Transl Med. 2022;7:e10257.

41. Hlavac N, VandeVord PJ. Astrocyte mechano-activation by high-rate overpressure involves alterations in structural and junctional proteins. Front Neurol. 2019;10:99.

42. Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: a focus on glial cells. APL Bioeng. 2021;5:021505.

43. Yu D, Jayasi J, Womac A, Kearns A, Bae C. Astrocyte inflammatory regulation of Piezo1 mechanosensitive ion channel. Biophys J. 2022;121:493A.

44. Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: exploring new therapeutic avenues in central nervous system pathology. Front Neurosci. 2022;16:861613.

45. Chen KH, Qiu Z. Sensational astrocytes: mechanotransduction in adult brain function. Neuron. 2022;110:2891-3.

46. Liu J, Yang Y, Liu Y. Piezo1 plays a role in optic nerve head astrocyte reactivity. Exp Eye Res. 2021;204:108445.

47. Liu Y, Liu J, Clark AF, Yang Y. Piezo1 plays a role in optic nerve head astrocyte mechanotransduction. Invest Ophthalmol Vis Sci. 2019;60:6185. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2745241. [Last accessed on 27 Apr 2025].

48. Melo P, Socodato R, Silveira MS, Neves MAD, Relvas JB, Mendes Pinto I. Mechanical actuators in microglia dynamics and function. Eur J Cell Biol. 2022;101:151247.

49. Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical pathways of cellular mechanosensing/mechanotransduction and their role in neurodegenerative diseases pathogenesis. Cells. 2022;11:3093.

50. O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005;451:193-203.

51. Hill RZ, Loud MC, Dubin AE, Peet B, Patapoutian A. PIEZO1 transduces mechanical itch in mice. Nature. 2022;607:104-10.

52. Neumann KD, Seshadri V, Thompson XD, et al. Microglial activation persists beyond clinical recovery following sport concussion in collegiate athletes. Front Neurol. 2023;14:1127708.

53. Hughes TM, Kuller LH, Barinas-Mitchell EJ, et al. Arterial stiffness and β-amyloid progression in nondemented elderly adults. JAMA Neurol. 2014;71:562-8.

54. Murphy MC, Huston J 3rd, Jack CR Jr, et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging. 2011;34:494-8.

55. Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci. 2019;11:233.

56. Maezawa I, Jenkins DP, Jin BE, Wulff H. Microglial KCa3.1 channels as a potential therapeutic target for Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012:868972.

57. Ran L, Ye T, Erbs E, et al. KCNN4 links PIEZO-dependent mechanotransduction to NLRP3 inflammasome activation. Sci. Immunol. 2023;8:eadf4699.

58. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med. 2017;214:1351-70.

59. Poh L, Kang SW, Baik SH, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34-47.

60. Lai A, Cox CD, Chandra Sekar N, et al. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol Rev Camb Philos Soc. 2022;97:604-14.

61. Ran L. Investigation of the roles of mechanical cues in NLRP3 inflammasome activation. 2022. Available from: https://theses.fr/2022STRAJ042. [Last accessed on 27 Apr 2025].

62. Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev. 2020;64:101192.

63. Kabigting JET, Toyama Y. Interplay between caspase, Yes-associated protein, and mechanics: a possible switch between life and death?. Curr Opin Cell Biol. 2020;67:141-6.

64. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176.

65. Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276-90.e17.

66. Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112-20.

67. Yin Z, Raj D, Saiepour N, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;55:115-22.

68. Kojima I, Nagasawa M. TRPV2. In: Nilius B, Flockerzi V, editors. Mammalian Transient receptor potential (TRP) cation channels. Berlin: Springer Berlin Heidelberg; 2014. pp. 247-72.

69. Thapak P, Bishnoi M, Sharma SS. Tranilast, a transient receptor potential vanilloid 2 channel (TRPV2) inhibitor attenuates amyloid β-induced cognitive impairment: possible mechanisms. Neuromolecular Med. 2022;24:183-94.

70. Enrich-Bengoa J, Manich G, Valente T, et al. TRPV2: a key player in myelination disorders of the central nervous system. Int J Mol Sci. 2022;23:3617.

71. Hu J, Chen Q, Zhu H, et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron. 2023;111:15-29.e8.

72. Jäntti H, Sitnikova V, Ishchenko Y, et al. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation. 2022;19:147.

73. Ivkovic S, Major T, Mitic M, Loncarevic-Vasiljkovic N, Jovic M, Adzic M. Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer’s disease. Life Sci. 2022;297:120470.

74. Zhu T, Guo J, Wu Y, et al. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience. 2023;26:105993.

75. Bouvier DS, Jones EV, Quesseveur G, et al. High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci Rep. 2016;6:24544.

76. Kosoy R, Fullard JF, Zeng B, et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci. Nat Genet. 2022;54:1145-54.

77. Liu H, Hu J, Zheng Q, et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front Immunol. 2022;13:816149.

78. Yu D, Ahmed A, Jayasi J, Womac A, Sally O, Bae C. Inflammation condition sensitizes Piezo1 mechanosensitive channel in mouse cerebellum astrocyte. Front Cell Neurosci. 2023;17:1200946.

79. Ayata P, Badimon A, Strasburger HJ, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci. 2018;21:1049-60.

80. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK. Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets. 2018;17:689-95.

81. Massaro M, Scoditti E, Carluccio MA, De Caterina R. Oxidative stress and vascular stiffness in hypertension: a renewed interest for antioxidant therapies?. Vascul Pharmacol. 2019;116:45-50.

82. Bai H, Yang B, Yu W, Xiao Y, Yu D, Zhang Q. Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp Cell Res. 2018;362:180-7.

83. Hong Z, Tian Y, Yuan Y, et al. Enhanced oxidative stress is responsible for TRPV4-induced neurotoxicity. Front Cell Neurosci. 2016;10:232.

84. Bai JZ, Lipski J. Involvement of TRPV4 channels in Aβ40-induced hippocampal cell death and astrocytic Ca2+ signalling. Neurotoxicology. 2014;41:64-72.

85. Zhang X, Leng S, Liu X, et al. Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment. Cardiovasc Diabetol. 2024;23:150.

86. Velasco-Estevez M, Mampay M, Boutin H, et al. Infection augments expression of mechanosensing Piezo1 channels in amyloid plaque-reactive astrocytes. Front Aging Neurosci. 2018;10:332.

87. Wang B, Ke W, Wang K, et al. Mechanosensitive ion channel Piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc degeneration. Oxid Med Cell Longev. 2021;2021:8884922.

88. Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal. 2020;14:357-76.

89. Herr I, Wilhelm D, Meyer E, Jeremias I, Angel P, Debatin KM. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ. 1999;6:130-5.

90. Waetzig V, Czeloth K, Hidding U, et al. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia. 2005;50:235-46.

91. Onyango IG, Bennett JP Jr, Tuttle JB. Endogenous oxidative stress in sporadic Alzheimer’s disease neuronal cybrids reduces viability by increasing apoptosis through pro-death signaling pathways and is mimicked by oxidant exposure of control cybrids. Neurobiol Dis. 2005;19:312-22.

92. Hsieh CJ, Kuo PL, Hsu YC, Huang YF, Tsai EM, Hsu YL. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med. 2014;67:159-70.

93. Cianciulli A, Porro C, Calvello R, Trotta T, Lofrumento DD, Panaro MA. Microglia mediated neuroinflammation: focus on PI3K modulation. Biomolecules. 2020;10:137.

94. Hirashima T, Hino N, Aoki K, Matsuda M. Stretching the limits of extracellular signal-related kinase (ERK) signaling - cell mechanosensing to ERK activation. Curr Opin Cell Biol. 2023;84:102217.

95. Kierdorf K, Prinz M. Microglia in steady state. J Clin Invest. 2017;127:3201-9.

96. Chi S, Cui Y, Wang H, et al. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron. 2022;110:2984-99.e8.

97. Wang YY, Zhang H, Ma T, et al. Piezo1 mediates neuron oxygen-glucose deprivation/reoxygenation injury via Ca2+/calpain signaling. Biochem Biophys Res Commun. 2019;513:147-53.

98. Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca2+ signaling to regulate extracellular matrix remodeling. FEBS J. 2021;288:5867-87.

99. Shi M, Du F, Liu Y, et al. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta neuropathol. 2013;126:725-39.

100. Ungvari Z, Wolin MS, Csiszar A. Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling?. Antioxid Redox Signal. 2006;8:1121-9.

101. Waters CM. Reactive oxygen species in mechanotransduction. Am J Physiol Lung Cell Mol Physiol. 2004;287:L484-5.

102. Simpson DSA, Oliver PL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020;9:743.

103. Fitzpatrick AW, Park ST, Zewail AH. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc Natl Acad Sci U S A. 2013;110:10976-81.

104. Nassar R, Wong E, Gsponer J, Lamour G. Inverse correlation between amyloid stiffness and size. J Am Chem Soc. 2018;141:58-61.

105. Khan MI, Gilpin K, Hasan F, Mahmud KAHA, Adnan A. Effect of strain rate on single tau, dimerized tau and tau-microtubule interface: a molecular dynamics simulation study. Biomolecules. 2021;11:1308.

106. Hagestedt T, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow E. Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol. 1989;109:1643-51.

107. Zempel H, Dennissen FJA, Kumar Y, et al. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem. 2017;292:12192-207.

108. Lulevich V, Zimmer CC, Hong H, Jin L, Liu G. Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-β peptide and neuronal cell interactions. Proc Natl Acad Sci U S A. 2010;107:13872-7.

109. Murphy MC, Jones DT, Jack CR Jr, et al. Regional brain stiffness changes across the Alzheimer’s disease spectrum. Neuroimage Clin. 2016;10:283-90.

110. Rivera-Rivera LA, Eisenmenger L, Cody KA, et al. Cerebrovascular stiffness and flow dynamics in the presence of amyloid and tau biomarkers. Alzheimers Dement. 2021;13:e12253.

111. Chakraborty R, Goswami C. Both heat-sensitive TRPV4 and cold-sensitive TRPM8 ion channels regulate microglial activity. Biochem Biophys Res Commun. 2022;611:132-9.

112. Redmon SN, Yarishkin O, Lakk M, et al. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia. 2021;69:1563-82.

113. Bai J, Lipski J. Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. NeuroToxicology. 2010;31:204-14.

114. Sianati S, Schroeter L, Richardson J, Tay A, Lamandé SR, Poole K. Modulating the mechanical activation of TRPV4 at the cell-substrate interface. Front Bioeng Biotechnol. 2020;8:608951.

115. Du K, Dou Y, Chen K, Zhao Y. Activation of TRPV4 induces intraneuronal tau hyperphosphorylation via cholesterol accumulation. Exp Neurol. 2023;364:114392.

116. Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation. 2021;28:e12703.

117. Owens P, O’Brien E. Hypotension in patients with coronary disease: can profound hypotensive events cause myocardial ischaemic events?. Heart. 1999;82:477-81.

118. Pluta R, Ułamek M, Jabłoński M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat Rec. 2009;292:1863-81.

119. Kalaria RN. Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer’s disease. Ann N Y Acad Sci. 1997;826:263-71.

120. Yu ZH, Ji YC, Li K, et al. Stiffness of the extracellular matrix affects apoptosis of nucleus pulposus cells by regulating the cytoskeleton and activating the TRPV2 channel protein. Cell Signal. 2021;84:110005.

121. Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of stretch-regulated TRPV2 and TRPV4 channels inferred through interactomics. Biomolecules. 2019;9:791.

122. Richardson J. Mechanical activation of PIEZO1 and TRPV4 at the cell substrate interface. 2022.

123. Richardson J, Kotevski A, Poole K. From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J. 2022;289:4447-69.

124. Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-mediated currents are modulated by substrate mechanics. ACS Nano. 2019;13:13545-59.

125. Pathak MM, Nourse JL, Tran T, et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci U S A. 2014;111:16148-53.

126. Ellefsen KL, Holt JR, Chang AC, et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Commun Biol. 2019;2:298.

127. Li Y, Hu H, Butterworth MB, Tian JB, Zhu MX, O’Neil RG. Expression of a diverse array of Ca2+-activated K+ channels (SK1/3, IK1, BK) that functionally couple to the mechanosensitive TRPV4 channel in the collecting duct system of kidney. PLoS One. 2016;11:e0155006.

128. Sarkar S. Microglial ion channels: key players in non-cell autonomous neurodegeneration. Neurobiol Dis. 2022;174:105861.

129. Fukuda N, Toriuchi K, Mimoto R, et al. Hypothermia attenuates neurotoxic microglial activation via TRPV4. Neurochem Res. 2023;49:800-13.

130. Kamash P, Ding Y. Hypothermia promotes synaptic plasticity and protective effects in neurological diseases. Brain Circ. 2021;7:294-7.

131. Macaya A. Apoptosis in the nervous system. Rev Neurol. 1996;24:1356-60. Available from: https://europepmc.org/article/med/8974737. [Last accessed on 27 Apr 2025].

132. Sedding DG, Homann M, Seay Y, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J. 2008;22:579-89.

133. Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer’s disease. Med Res Rev. 2019;39:608-30.

134. Duszyc K, Gomez GA, Lagendijk AK, et al. Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Curr Biol. 2021;31:1326-36.e5.

135. Eisenhoffer GT, Loftus PD, Yoshigi M, et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature. 2012;484:546-9.

136. Abe J, Berk BC. Novel mechanisms of endothelial mechanotransduction. Arterioscler Thromb Vasc Biol. 2014;34:2378-86.

137. Kawaue T, Yow I, Pan Y, et al. Inhomogeneous mechanotransduction defines the spatial pattern of apoptosis-induced compensatory proliferation. Dev Cell. 2023;58:267-77.e5.

138. Xu X, Shen X, Wang J, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer’s disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465.

139. Tanaka H, Homma H, Fujita K, et al. YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nat Commun. 2020;11:507.

140. Rudzitis CN, Lakk M, Cullimore B, Krizaj D. TRPV4 contributes to stiffness-induced upregulation of YAP in the Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2023;64:3452. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2787756. [Last accessed on 27 Apr 2025].

141. Chen X, Sun FJ, Wei YJ, et al. Increased expression of transient receptor potential vanilloid 4 in cortical lesions of patients with focal cortical dysplasia. CNS Neurosci Ther. 2016;22:280-90.

142. Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci Ther. 2012;18:285-94.

143. Geronzi U, Lotti F, Grosso S. Oxidative stress in epilepsy. Expert Rev Neurother. 2018;18:427-34.

144. Nass RD, Hampel KG, Elger CE, Surges R. Blood pressure in seizures and epilepsy. Front Neurol. 2019;10:501.

145. Wang Z, Zhou L, An D, et al. TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis. 2019;10:386.

146. An D, Qi X, Li K, et al. Blockage of TRPV4 downregulates the nuclear factor-kappa B signaling pathway to inhibit inflammatory responses and neuronal death in mice with pilocarpine-induced status epilepticus. Cell Mol Neurobiol. 2023;43:1283-300.

147. Means JC, Gerdes BC, Kaja S, et al. Caspase-3-dependent proteolytic cleavage of tau causes neurofibrillary tangles and results in cognitive impairment during normal aging. Neurochem Res. 2016;41:2278-88.

148. Glushakova OY, Glushakov AO, Borlongan CV, Valadka AB, Hayes RL, Glushakov AV. Role of caspase-3-mediated apoptosis in chronic caspase-3-cleaved tau accumulation and blood-brain barrier damage in the corpus callosum after traumatic brain injury in rats. J Neurotrauma. 2018;35:157-73.

149. Donnaloja F, Limonta E, Mancosu C, et al. Unravelling the mechanotransduction pathways in Alzheimer’s disease. J Biol Eng. 2023;17:22.

150. Niethammer P. Components and mechanisms of nuclear mechanotransduction. Ann Rev Cell Dev Biol. 2021;37:233-56.

151. Lomakin AJ, Cattin CJ, Cuvelier D, et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science. 2020;370:eaba2894.

152. Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181:800-17.e22.

153. Sun X, Eastman G, Shi Y, et al. Structural and functional damage to neuronal nuclei caused by extracellular tau oligomers. Alzheimers Dement. 2024;20:1656-70.

154. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585:114-25.

155. Jazvinšćak Jembrek M, Hof PR, Šimić G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell Longev. 2015;2015:346783.

156. Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood. 2008;111:4365-74.

157. Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25:37-45.

158. Ganesan V, Colombini M. Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 2010;584:2128-34.

159. Leiphart RJ, Chen D, Peredo AP, Loneker AE, Janmey PA. Mechanosensing at cellular interfaces. Langmuir. 2019;35:7509-19.

160. Thodeti CK, Matthews B, Ravi A, et al. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res. 2009;104:1123-30.

161. Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res. 2019;68:S131-8.

162. Jie P, Hong Z, Tian Y, et al. Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis. 2015;6:e1775.

163. Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015;19:1725-42.

164. Shi J, Hyman AJ, De Vecchis D, et al. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels. Cell Rep. 2020;33:108225.

165. Shi J. How does fast-inactivation PIEZO1 channel sense constant mechanical forces in native endothelial cells?. Biophys J. 2023;122:160A.

166. Hunter OC. Mechanical cyclic strain induces ceramide generation in endothelial cells. 2009. Available from: http://d-scholarship.pitt.edu/8714/1/HunterOC_ETD2009.pdf. [Last accessed on 27 Apr 2025].

167. Czarny M, Liu J, Oh P, Schnitzer JE. Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. J Biol Chem. 2003;278:4424-30.

168. Razani B, Lisanti MP. Caveolins and caveolae: molecular and functional relationships. Exp Cell Res. 2001;271:36-44.

169. Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol. 2018;28:R402-5.

170. Niesman IR, Zemke N, Fridolfsson HN, et al. Caveolin isoform switching as a molecular, structural, and metabolic regulator of microglia. Mol Cell Neurosci. 2013;56:283-97.

171. Quest AFG, Lobos-González L, Nuñez S, et al. The caveolin-1 connection to cell death and survival. Curr Mol Med. 2013;13:266-81.

172. Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging. 2004;25:753-9.

173. Gupta A, Sharma A, Kumar A, Goyal R. Alteration in memory cognition due to activation of caveolin-1 and oxidative damage in a model of dementia of Alzheimer’s type. Indian J Pharmacol. 2019;51:173-80.

174. Wu Y, Lim YW, Parton RG. Caveolae and the oxidative stress response. Biochem Soc Trans. 2023;51:1377-85.

175. Bruno L, Karagil S, Mahmood A, Elbediwy A, Stolinski M, Mackenzie FE. Mechanosensing and the hippo pathway in microglia: a potential link to Alzheimer’s disease pathogenesis?. Cells. 2021;10:3144.

176. Qing J, Liu X, Wu Q, et al. Hippo/YAP pathway plays a critical role in effect of GDNF against Aβ-induced inflammation in microglial cells. DNA Cell Biol. 2020;39:1064-71.

177. Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res. 2020;98:796-814.

178. Kim KS, Hwang HA, Chae SK, Ha H, Kwon KS. Upregulation of Daxx mediates apoptosis in response to oxidative stress. J Cell Biochem. 2005;96:330-8.

179. Cinar B, Collak FK, Lopez D, et al. MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling. Cancer Res. 2011;71:4303-13.

180. Liu J, Wang J, Liu Y, et al. Liquid-liquid phase separation of DDR1 counteracts the Hippo pathway to orchestrate arterial stiffening. Circ Res. 2023;132:87-105.

181. Li D, Ji JX, Xu YT, et al. Inhibition of Lats1/p-YAP 1 pathway mitigates neuronal apoptosis and neurological deficits in a rat model of traumatic brain injury. CNS Neurosci Ther. 2018;24:906-16.

182. Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: from molecular biophysics to physiology and disease. Protein Sci. 2021;30:1294-314.

183. Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1’s neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer’s disease. J Alzheimers Dis Rep. 2025;9:25424823241296018.

184. Yu L, Chibnik LB, Srivastava GP, et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol. 2015;72:15-24.

185. Peter BJ, Kent HM, Mills IG, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303:495-9.

186. Dräger NM, Nachman E, Winterhoff M, et al. Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep. 2017;18:2051-66.

187. Povarova OI, Antifeeva IA, Fonin AV, Turoverov KK, Kuznetsova IM. The role of liquid-liquid phase separation in actin polymerization. Int J Mol Sci. 2023;24:3281.

188. Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys. 2011;40:169-86.

189. Nadezhdina ES, Lomakin AJ, Shpilman AA, Chudinova EM, Ivanov PA. Microtubules govern stress granule mobility and dynamics. Biochim Biophys Acta. 2010;1803:361-71.

190. Li Y, Li L, Li B, et al. Mechanical stretching induces fibroblasts apoptosis through activating Piezo1 and then destroying actin cytoskeleton. Int J Med Sci. 2023;20:771-80.

191. Kommaddi RP, Das D, Karunakaran S, et al. Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer’s disease. J Neurosci. 2018;38:1085-99.

192. Samir P, Kesavardhana S, Patmore DM, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573:590-4.

193. Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem. 2021;157:944-62.

194. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells. 2013;18:135-46.

195. Somasekharan SP, Zhang F, Saxena N, et al. G3BP1-linked mRNA partitioning supports selective protein synthesis in response to oxidative stress. Nucleic Acids Res. 2020;48:6855-73.

196. Feng Z, Mao Z, Yang Z, Liu X, Nakamura F. The force-dependent filamin A-G3BP1 interaction regulates phase-separated stress granule formation. J Cell Sci. 2023;136:jcs260684.

197. Gottlieb PA. A tour de force: the discovery, properties, and function of piezo channels. Curr Top Membr. 2017;79:1-36.

198. Zhang H, Yang Z, Nakamura F. Importance of the filamin A-Sav1 interaction in organ size control: evidence from transgenic mice. Int J Dev Biol. 2023;67:27-37.

199. Wei SC, Fattet L, Tsai JH, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678-88.

200. Matrongolo MJ, Ang PS, Wu J, et al. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. J Clin Invest. 2023;134:e171468.

201. Yang P, Mathieu C, Kolaitis RM, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181:325-45.e28.

202. Tauler J, Zudaire E, Liu H, Shih J, Mulshine JL. hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines. Cancer Res. 2010;70:7137-47.

203. Calabrese V, Colombrita C, Guagliano E, et al. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem Res. 2005;30:797-807.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/