REFERENCES
1. Chhetri JK, Mei S, Wang C, Chan P. New horizons in Parkinson's disease in older populations. Age Ageing. 2023;52:afad186.
2. Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's disease: an update. Curr Neurol Neurosci Rep. 2024;24:163-79.
3. Zhu J, Cui Y, Zhang J, et al. Temporal trends in the prevalence of Parkinson's disease from 1980 to 2023: a systematic review and meta-analysis. Lancet Healthy Longev. 2024;5:e464-79.
4. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30:1591-601.
5. Geng L, Gao W, Saiyin H, et al. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson's disease. Mol Neurodegener. 2023;18:94.
6. Muwanigwa MN, Modamio-Chamarro J, Antony PMA, et al. Alpha-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson's disease. Mol Cell Neurosci. 2024;128:103919.
7. González-Casacuberta I, Vilas D, Pont-Sunyer C, et al. Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson's disease patients and healthy controls. PLoS One. 2022;17:e0265256.
8. Lim SY, Klein C. Parkinson's disease is predominantly a genetic disease. J Parkinsons Dis. 2024;14:467-82.
9. Pang SY, Ho PW, Liu HF, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease. Transl Neurodegener. 2019;8:23.
10. Singleton A, Hardy J. The evolution of genetics: Alzheimer's and Parkinson's diseases. Neuron. 2016;90:1154-63.
11. Cherian A, K P D, Vijayaraghavan A. Parkinson's disease - genetic cause. Curr Opin Neurol. 2023;36:292-301.
12. Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci. 2024;16:1329554.
13. Nalls MA, Blauwendraat C, Vallerga CL, et al; 23andMe Research Team, System Genomics of Parkinson’s Disease Consortium, International Parkinson’s Disease Genomics Consortium. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091-102.
14. Dulski J, Ross OA, Wszolek ZK. Genetics of Parkinson's disease: state-of-the-art and role in clinical settings. Neurol Neurochir Pol. 2024;58:38-46.
15. Yemni EA, Monies D, Alkhairallah T, et al. Integrated analysis of whole exome sequencing and copy number evaluation in Parkinson's disease. Sci Rep. 2019;9:3344.
16. Abe T, Kuwahara T. Targeting of lysosomal pathway genes for Parkinson's disease modification: insights from cellular and animal models. Front Neurol. 2021;12:681369.
17. Benitez BA, Davis AA, Jin SC, et al. Resequencing analysis of five Mendelian genes and the top genes from genome-wide association studies in Parkinson's disease. Mol Neurodegener. 2016;11:29.
18. Yuan L, Song Z, Deng X, et al. Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson's disease. Sci Rep. 2016;6:33850.
19. Guo JF, Zhang L, Li K, et al. Coding mutations in NUS1 contribute to Parkinson's disease. Proc Natl Acad Sci U S A. 2018;115:11567-72.
20. Jiang L, Mei JP, Zhao YW, et al. Low-frequency and rare coding variants of NUS1 contribute to susceptibility and phenotype of Parkinson's disease. Neurobiol Aging. 2022;110:106-12.
21. Jiang L, Pan HX, Zhao YW, et al. Contribution of coding/non-coding variants in NUS1 to late-onset sporadic Parkinson's disease. Parkinsonism Relat Disord. 2021;84:29-34.
22. Araki K, Nakamura R, Ito D, et al. NUS1 mutation in a family with epilepsy, cerebellar ataxia, and tremor. Epilepsy Res. 2020;164:106371.
23. Yuan L, Chen X, Song Z, et al. Extended study of NUS1 gene variants in Parkinson's disease. Front Neurol. 2020;11:583182.
24. Chen X, Xiao Y, Zhou M, et al. Genetic analysis of NUS1 in Chinese patients with Parkinson's disease. Neurobiol Aging. 2020;86:202.e5-6.
25. Bustos BI, Bandres-Ciga S, Gibbs JR, et al; International Parkinson's Disease Genomics Consortium (IPDGC). Replication assessment of NUS1 variants in Parkinson's disease. Neurobiol Aging. 2021;101:300.e1-3.
26. Li H, Yuan L, Yang H, et al. Analysis of SOD1 variants in Chinese patients with familial amyotrophic lateral sclerosis. QJM. 2023;116:365-74.
27. Deng X, Zheng W, Yang Y, et al. Identification of PLA2G6 variants in a Chinese patient with Parkinson's disease. Ageing Neur Dis. 2023;3:9.
28. Guo Y, Sun Y, Song Z, et al. Genetic analysis and literature review of SNCA variants in Parkinson's disease. Front Aging Neurosci. 2021;13:648151.
29. Fan K, Hu P, Song C, et al. Novel compound heterozygous PRKN variants in a Han-Chinese family with early-onset Parkinson's disease. Parkinsons Dis. 2019;2019:9024894.
30. Wang P, Guo Y, Song C, Liu Y, Deng H. PINK1 p.K520RfsX3 mutation identified in a Chinese family with early-onset Parkinson's disease. Neurosci Lett. 2018;676:98-102.
31. Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-mediated Parkinson's disease. Cells. 2024;13:296.
32. Tezuka T, Ishiguro M, Taniguchi D, et al. Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson's disease. Neurobiol Dis. 2024;199:106571.
33. Pejaver V, Urresti J, Lugo-Martinez J, et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020;11:5918.
34. Li G, Panday SK, Alexov E. SAAFEC-SEQ: a sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. Int J Mol Sci. 2021;22:606.
35. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62:1125-32.
36. Yao LY, Guo JF, Wang L, et al. LRRK2 Pro755Leu variant in ethnic Chinese population with Parkinson's disease. Neurosci Lett. 2011;495:35-8.
37. Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis. 2022;173:105851.
38. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276:2045-7.
40. Deng X, Yuan L, Jankovic J, Deng H. The role of the PLA2G6 gene in neurodegenerative diseases. Ageing Res Rev. 2023;89:101957.
41. Andrews SV, Kukkle PL, Menon R, et al; Parkinson Research Alliance of India (PRAI). The genetic drivers of juvenile, young, and early-onset Parkinson's disease in India. Mov Disord. 2024;39:339-49.
42. Vollstedt EJ, Madoev H, Aasly A, et al. Establishing an online resource to facilitate global collaboration and inclusion of underrepresented populations: experience from the MJFF Global Genetic Parkinson's Disease Project. PLoS One. 2023;18:e0292180.
43. Navarro E, Esteras N. A new mutation in the Parkinson's-related FBXO7 gene impairs mitochondrial and proteasomal function. FEBS J. 2024;291:2562-4.
44. Shadkam R, Saadat P, Azadmehr A, Chehrazi M, Daraei A. Key non-coding variants in three neuroapoptosis and neuroinflammation-related lncRNAs are protectively associated with susceptibility to Parkinson's disease and some of its clinical features. Mol Neurobiol. 2024;61:2854-65.
45. Huang X, Zhao Y, Pan H, et al. The association between LIN28A gene rare variants and Parkinson's disease in Chinese population. Gene. 2022;829:146515.
46. Yu M, Ye H, De-Paula RB, et al. Functional screening of lysosomal storage disorder genes identifies modifiers of alpha-synuclein neurotoxicity. PLoS Genet. 2023;19:e1010760.
47. Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC. Neurite outgrowth inhibitor B receptor: a versatile receptor with multiple functions and actions. DNA Cell Biol. 2017;36:1142-50.
48. Fliesler SJ, Ramachandra Rao S, Nguyen MN, KhalafAllah MT, Pittler SJ. Vertebrate animal models of RP59: current status and future prospects. Int J Mol Sci. 2022;23:13324.
49. Edani BH, Grabińska KA, Zhang R, et al. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci U S A. 2020;117:20794-802.
50. Harrison KD, Park EJ, Gao N, et al. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 2011;30:2490-500.
51. Williams LJ, Waller S, Qiu J, et al. DHDDS and NUS1: a converging pathway and common phenotype. Mov Disord Clin Pract. 2024;11:76-85.
52. Xue J, Zhu Y, Wei L, et al. Loss of Drosophila NUS1 results in cholesterol accumulation and Parkinson's disease-related neurodegeneration. FASEB J. 2022;36:e22411.
53. Harrison KD, Miao RQ, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa WC. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab. 2009;10:208-18.
54. Park EJ, Grabińska KA, Guan Z, et al. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 2014;20:448-57.
55. Hamdan FF, Myers CT, Cossette P, et al; Deciphering Developmental Disorders Study. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664-85.