REFERENCES
1. Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J. 2021;35:e21260.
2. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8:267.
3. Bonham LW, Karch CM, Fan CC, et al; International FTD-Genomics Consortium (IFGC), International Parkinson’s Disease Genetics Consortium (IPDGC), International Genomics of Alzheimer’s Project (IGAP). CXCR4 involvement in neurodegenerative diseases.Transl Psychiatry. 2018;8:73.
4. Wang QL, Fang CL, Huang XY, Xue LL. Research progress of the CXCR4 mechanism in Alzheimer’s disease. Ibrain. 2022;8:3-14.
5. Sobue A, Komine O, Yamanaka K. Neuroinflammation in Alzheimer’s disease: microglial signature and their relevance to disease. Inflamm Regen. 2023;43:26.
6. Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001;4:702-10.
7. Hendrix CW, Collier AC, Lederman MM, et al; AMD3100 HIV Study Group. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr. 2004;37:1253-62.
8. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126:2443-51.
9. Kawanishi S, Takata K, Itezono S, et al. Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of alzheimer’s disease. J Alzheimers Dis. 2018;64:563-85.
10. Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther. 2022;28:1942-52.
11. Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE. Microglia and microglia-like cells: similar but different. Front Cell Neurosci. 2022;16:816439.
12. Kuroda E, Takata K, Nishimura K, et al. Peripheral blood-derived microglia-like cells decrease amyloid-β burden and ameliorate cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2020;73:413-29.
13. Li C, Chen YH, Zhang K. Neuroprotective properties and therapeutic potential of bone marrow-derived microglia in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2020;35:1533317520927169.
14. Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial properties of amyloidogenic proteins and peptides: new data in the COVID era. Biomedicines. 2023;11:1215.
15. Grubman A, Choo XY, Chew G, et al. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat Commun. 2021;12:3015.
16. Gavriel Y, Rabinovich-Nikitin I, Ezra A, Barbiro B, Solomon B. Subcutaneous administration of AMD3100 into mice models of Alzheimer’s disease ameliorated cognitive impairment, reduced neuroinflammation, and improved pathophysiological markers. J Alzheimers Dis. 2020;78:653-71.
17. Marescal O, Cheeseman IM. Cellular mechanisms and regulation of quiescence. Dev Cell. 2020;55:259-71.
18. Adlere I, Caspar B, Arimont M, et al. Modulators of CXCR4 and CXCR7/ACKR3 function. Mol Pharmacol. 2019;96:737-52.
19. Shin JW, Lee JK, Lee JE, et al. Combined effects of hematopoietic progenitor cell mobilization from bone marrow by granulocyte colony stimulating factor and AMD3100 and chemotaxis into the brain using stromal cell-derived factor-1α in an Alzheimer’s disease mouse model. STEM CELLS. 2011;29:1075-89.