REFERENCES
1. Li J, Xie H, Ying Y, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in
2. Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 2021;14:117.
3. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer 2020;19:88.
4. Fang Z, Mei W, Qu C, et al. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022;11:45.
6. Feng H, Yuan X, Wu S, et al. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif 2023;56:e13340.
7. Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and neurological diseases. Mol Neurobiol 2022;59:1925-37.
9. Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci 2018;19:2937.
10. Zhang R, Zhang Y, Guo F, Li S, Cui H. RNA N6-methyladenosine modifications and its roles in Alzheimer’s disease. Front Cell Neurosci 2022;16:820378.
11. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother 2019;112:108613.
12. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res 2018;28:507-17.
13. Dong S, Wu Y, Liu Y, Weng H, Huang H. N6-methyladenosine steers RNA metabolism and regulation in cancer. Cancer Commun 2021;41:538-59.
16. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 2020;25:5789.
17. Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023;162:114583.
18. Izco M, Martínez P, Corrales A, et al. Changes in the brain and plasma Aβ peptide levels with age and its relationship with cognitive impairment in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuroscience 2014;263:269-79.
19. Han M, Liu Z, Xu Y, et al. Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front Neurosci 2020;14:98.
20. Bai B, Wang X, Li Y, et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 2020;105:975-91.e7.
21. Zhao F, Xu Y, Gao S, et al. METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events. Mol Neurodegener 2021;16:70.
22. Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J. Altered expression of the m6A methyltransferase METTL3 in Alzheimer’s disease. eNeuro 2020;7:ENEURO.0125-20.2020.
23. Sandberg A, Luheshi LM, Söllvander S, et al. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci U S A 2010;107:15595-600.
24. Yin H, Ju Z, Zheng M, et al. Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer’s disease pathology in mice. PLoS Biol 2023;21:e3002017.
25. Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr Opin Neurobiol 2021;69:131-8.
26. Shafik AM, Zhang F, Guo Z, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol 2021;22:17.
27. Christopher MA, Myrick DA, Barwick BG, et al. LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 2017;8:805.
28. Tang Z, Cao J, Yao J, et al. KDM1A-mediated upregulation of METTL3 ameliorates Alzheimer’s disease via enhancing autophagic clearance of p-Tau through m6A-dependent regulation of STUB1. Free Radic Biol Med 2023;195:343-58.
29. Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev 2013;12:757-63.
30. You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015;18:603-10.
31. Puri S, Hu J, Sun Z, et al. Identification of circRNAs linked to Alzheimer’s disease and related dementias. Alzheimers Dement 2023;19:3389-405.
32. Wang X, Xie J, Tan L, et al. N6-methyladenosine-modified circRIMS2 mediates synaptic and memory impairments by activating GluN2B ubiquitination in Alzheimer’s disease. Transl Neurodegener 2023;12:53.
33. Ma C, Chang M, Lv H, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol 2018;19:68.
35. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol 2021;20:385-97.
36. Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurol 2022;21:89-102.
37. Mathoux J, Henshall DC, Brennan GP. Regulatory mechanisms of the RNA modification m6A and significance in brain function in health and disease. Front Cell Neurosci 2021;15:671932.
38. Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021;21:422-33.
39. Yu Z, Huang L, Xia Y, et al. Analysis of m6A modification regulators in the substantia nigra and striatum of MPTP-induced Parkinson’s disease mice. Neurosci Lett 2022;791:136907.
40. Zhuang M, Li X, Zhu J, et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 2019;47:4765-77.
41. Shi H, Zhang X, Weng YL, et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 2018;563:249-53.
42. Blommer J, Pitcher T, Mustapic M, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson’s disease. Brain 2023;146:195-208.
43. Lei Q, Wu T, Wu J, et al. Roles of α-synuclein in gastrointestinal microbiome dysbiosis-related Parkinson’s disease progression (Review). Mol Med Rep 2021;24:734.
44. He H, Zhang Q, Liao J, et al. METTL14 is decreased and regulates m6A modification of α-synuclein in Parkinson’s disease. J Neurochem 2023;166:609-22.
45. Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117-20.
46. Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161:1388-99.
47. Arodin L, Lamparter H, Karlsson H, et al. Alteration of thioredoxin and glutaredoxin in the progression of Alzheimer’s disease. J Alzheimers Dis 2014;39:787-97.
48. Miller O, Mieyal JJ. Critical roles of glutaredoxin in brain cells-implications for Parkinson’s disease. Antioxid Redox Signal 2019;30:1352-68.
49. Ferreira AFF, Binda KH, Singulani MP, et al. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson’s disease. Behav Brain Res 2020;387:112607.
50. Gong X, Huang M, Chen L. NRF1 mitigates motor dysfunction and dopamine neuron degeneration in mice with Parkinson’s disease by promoting GLRX m6A methylation through upregulation of METTL3 transcription. CNS Neurosci Ther 2024;30:e14441.
51. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 2013;9:617-28.
52. Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 2018;14:544-58.
53. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-77.
54. Chew J, Gendron TF, Prudencio M, et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015;348:1151-4.
55. Chatterjee M, Özdemir S, Fritz C, et al. Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS. Nat Med 2024;30:1771-83.
57. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-56.
58. Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023;46:1025-41.
59. Li Y, Dou X, Liu J, et al. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci 2023;26:1328-38.
61. Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021;22:197-208.
62. Melamed Z, López-Erauskin J, Baughn MW, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 2019;22:180-90.
63. Koranda JL, Dore L, Shi H, et al. Mettl14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron 2018;99:283-92.e5.
64. McMillan M, Gomez N, Hsieh C, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell 2023;83:219-36.e7.
65. Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020;5:125.
66. Feng Z, Zhou F, Tan M, et al. Targeting m6A modification inhibits herpes virus 1 infection. Genes Dis 2022;9:1114-28.
67. Kwon I, Xiang S, Kato M, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 2014;345:1139-45.
68. Zhang YJ, Gendron TF, Ebbert MTW, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat Med 2018;24:1136-42.
69. Park J, Wu Y, Shao W, et al. Poly(GR) interacts with key stress granule factors promoting its assembly into cytoplasmic inclusions. Cell Rep 2023;42:112822.
70. Chen L. FUS mutation is probably the most common pathogenic gene for JALS, especially sporadic JALS. Rev Neurol 2021;177:333-40.
71. Aksoy YA, Deng W, Stoddart J, et al. “STRESSED OUT”: the role of FUS and TDP-43 in amyotrophic lateral sclerosis. Int J Biochem Cell Biol 2020;126:105821.
72. Coady TH, Manley JL. ALS mutations in TLS/FUS disrupt target gene expression. Genes Dev 2015;29:1696-706.
73. Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019;176:419-34.
74. Yoneda R, Ueda N, Kurokawa R. m6A modified short RNA fragments inhibit cytoplasmic TLS/FUS aggregation induced by hyperosmotic stress. Int J Mol Sci 2021;22:11014.
75. Fields E, Vaughan E, Tripu D, et al. Gene targeting techniques for Huntington’s disease. Ageing Res Rev 2021;70:101385.
76. Duan W, Urani E, Mattson MP. The potential of gene editing for Huntington’s disease. Trends Neurosci 2023;46:365-76.
78. Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 2019;102:899.
80. Agostoni E, Michelazzi S, Maurutto M, et al. Effects of Pin1 loss in HdhQ111 knock-in mice. Front Cell Neurosci 2016;10:110.
81. Merkurjev D, Hong WT, Iida K, et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 2018;21:1004-14.
82. Pupak A, Singh A, Sancho-Balsells A, et al. Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington’s disease mice. Cell Mol Life Sci 2022;79:416.
83. Neueder A, Dumas AA, Benjamin AC, Bates GP. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat Commun 2018;9:3955.
84. Sathasivam K, Neueder A, Gipson TA, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 2013;110:2366-70.
85. Fienko S, Landles C, Sathasivam K, et al. Alternative processing of human HTT mRNA with implications for Huntington’s disease therapeutics. Brain 2022;145:4409-24.
86. Ly S, Didiot MC, Ferguson CM, et al. Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Commun 2022;4:fcac248.
87. Pupak A, Navarro IR, Sathasivam K, et al. m6A RNA modification of mHtt intron 1 regulates the generation of Htt1a in Huntington’s Disease. 2023. Available from: https://www.biorxiv.org/content/10.1101/2023.11.10.566530v1. [Last accessed on 4 Sep 2024].
88. Tada M, Coon EA, Osmand AP, et al. Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: a clinicopathologic study. Acta Neuropathol 2012;124:749-60.
89. Sanchez II, Nguyen TB, England WE, et al. Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021;131:140723.
90. Bai D, Zhu L, Jia Q, et al. Loss of TDP-43 promotes somatic CAG repeat expansion in Huntington’s disease knock-in mice. Prog Neurobiol 2023;227:102484.
91. Dewan R, Chia R, Ding J, et al; American Genome Center (TAGC); FALS Sequencing Consortium; Genomics England Research Consortium; International ALS/FTD Genomics Consortium (iAFGC); International FTD Genetics Consortium (IFGC); International LBD Genomics Consortium (iLBDGC); NYGC ALS Consortium; PROSPECT Consortium. Pathogenic Huntingtin repeat expansions in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 2021;109:448-60.e4.
92. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015;518:560-4.
93. Nguyen TB, Miramontes R, Chillon-Marinas C, et al. Aberrant splicing in Huntington’s disease via disrupted TDP-43 activity accompanied by altered m6A RNA modification. 2023. Available from: https://www.biorxiv.org/content/10.1101/2023.10.31.565004v1. [Last accessed on 4 Sep 2024].
94. Lence T, Akhtar J, Bayer M, et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature 2016;540:242-7.
95. Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 2020;21:36-51.
96. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016;62:335-45.
97. Yin P, Li S, Li XJ, Yang W. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell 2022;13:707-20.