REFERENCES

1. Qi S, Yin P, Wang L, et al. Prevalence of Parkinson’s disease: a community-based study in China. Mov Disord 2021;36:2940-4.

2. Choudhury P, Zhang N, Adler CH, et al. Longitudinal motor decline in dementia with Lewy bodies, Parkinson disease dementia, and Alzheimer’s dementia in a community autopsy cohort. Alzheimers Dement 2023;19:4377-87.

3. Leite Silva ABR, Gonçalves de Oliveira RW, Diógenes GP, et al. Premotor, nonmotor and motor symptoms of Parkinson’s Disease: A new clinical state of the art. Ageing Res Rev 2023;84:101834.

4. Duncan GW, Khoo TK, Yarnall AJ, et al. Health-related quality of life in early Parkinson’s disease: the impact of nonmotor symptoms. Mov Disord 2014;29:195-202.

5. Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR. NMSS Validation Group. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord 2011;26:399-406.

6. Maggi G, Vitale C, Cerciello F, Santangelo G. Sleep and wakefulness disturbances in Parkinson’s disease: A meta-analysis on prevalence and clinical aspects of REM sleep behavior disorder, excessive daytime sleepiness and insomnia. Sleep Med Rev 2023;68:101759.

7. Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The neurophysiology of sleep in Parkinson’s disease. Mov Disord 2021;36:1526-42.

8. Bohnen NI, Hu MTM. Sleep disturbance as potential risk and progression factor for Parkinson’s disease. J Parkinsons Dis 2019;9:603-14.

9. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019;18:307-18.

10. Liu Y, Lawton MA, Lo C, et al. Longitudinal changes in Parkinson’s disease symptoms with and without rapid eye movement sleep behavior disorder: the Oxford discovery cohort study. Mov Disord 2021;36:2821-32.

11. Malhotra RK. Neurodegenerative disorders and sleep. Sleep Med Clin 2018;13:63-70.

12. Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol 2019;18:296-306.

13. Ngo HV, Claassen J, Dresler M. Sleep: Slow wave activity predicts amyloid-β accumulation. Curr Biol 2020;30:R1371-3.

14. Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 2018;115:4483-8.

15. Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 2020;45:104-20.

16. Sundaram S, Hughes RL, Peterson E, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci Biobehav Rev 2019;103:305-15.

17. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science 2020;370:50-6.

18. Hsu JL, Wei YC, Toh CH, et al. Magnetic resonance images implicate that glymphatic alterations mediate cognitive dysfunction in Alzheimer disease. Ann Neurol 2023;93:164-74.

19. Zhou Y, Cai J, Zhang W, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 2020;87:357-69.

20. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018;17:1016-24.

21. Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 2020;143:2576-93.

22. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2014;34:16180-93.

23. Wang X, Lou N, Eberhardt A, et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci Transl Med 2020;12:eaaw3210.

24. Simon M, Wang MX, Ismail O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimers Res Ther 2022;14:59.

25. Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med 2022;219:e20211275.

26. Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener 2019;8:7.

27. Zhang Y, Zhang C, He XZ, et al. Interaction between the glymphatic system and α-synuclein in Parkinson’s disease. Mol Neurobiol 2023;60:2209-22.

28. Cui H, Wang W, Zheng X, et al. Decreased AQP4 expression aggravates α-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. J Mol Neurosci 2021;71:2500-13.

29. Gallegos S, Pacheco C, Peters C, Opazo CM, Aguayo LG. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci 2015;9:59.

30. Villar-Piqué A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 2016;139 Suppl 1:240-55.

31. Chu Y, Muller S, Tavares A, et al. Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain 2019;142:3565-79.

32. Si X, Guo T, Wang Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Parkinsons Dis 2022;8:54.

33. Shen T, Yue Y, Ba F, et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson’s disease. NPJ Parkinsons Dis 2022;8:174.

34. Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 2019;5:eaav5447.

35. Siow TY, Toh CH, Hsu JL, et al. Association of sleep, neuropsychological performance, and gray matter volume with glymphatic function in community-dwelling older adults. Neurology 2022;98:e829-38.

36. Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 2019;363:880-4.

37. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke 2013;44:S93-5.

38. Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9.

39. Mason GM, Lokhandwala S, Riggins T, Spencer RMC. Sleep and human cognitive development. Sleep Med Rev 2021;57:101472.

40. Simon KC, Clemenson GD, Zhang J, et al. Sleep facilitates spatial memory but not navigation using the Minecraft Memory and Navigation task. Proc Natl Acad Sci U S A 2022;119:e2202394119.

41. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016;354:1004-8.

42. Postuma RB, Aarsland D, Barone P, et al. Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 2012;27:617-26.

43. Iranzo A. Sleep in Neurodegenerative Diseases. Sleep Med Clin 2016;11:1-18.

44. Mizrahi-Kliger AD, Kaplan A, Israel Z, Deffains M, Bergman H. Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc Natl Acad Sci U S A 2020;117:17359-68.

45. Herrero Babiloni A, Bellemare A, Beetz G, et al. The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: a systematic review. Sleep Med Rev 2021;55:101381.

46. Chahine LM, Amara AW, Videnovic A. A systematic review of the literature on disorders of sleep and wakefulness in Parkinson’s disease from 2005 to 2015. Sleep Med Rev 2017;35:33-50.

47. Zhu K, van Hilten JJ, Marinus J. Course and risk factors for excessive daytime sleepiness in Parkinson’s disease. Parkinsonism Relat Disord 2016;24:34-40.

48. Spindler M, Gooneratne NS, Siderowf A, Duda JE, Cantor C, Dahodwala N. Daytime sleepiness is associated with falls in Parkinson’s disease. J Parkinsons Dis 2013;3:387-91.

49. Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142:744-59.

50. Joza S, Hu MT, Jung KY, et al. International REM Sleep Behavior Disorder Study Group. Progression of clinical markers in prodromal Parkinson’s disease and dementia with Lewy bodies: a multicentre study. Brain 2023;146:3258-72.

51. Iranzo A, Santamaria J, Tolosa E. Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol 2016;15:405-19.

52. Iranzo A, Tolosa E, Gelpi E, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013;12:443-53.

53. Yang X, Liu B, Shen H, et al. Prevalence of restless legs syndrome in Parkinson’s disease: a systematic review and meta-analysis of observational studies. Sleep Med 2018;43:40-6.

54. Estiar MA, Senkevich K, Yu E, et al. Lack of causal effects or genetic correlation between restless legs syndrome and Parkinson’s disease. Mov Disord 2021;36:1967-72.

55. Scullin MK, Trotti LM, Wilson AG, Greer SA, Bliwise DL. Nocturnal sleep enhances working memory training in Parkinson’s disease but not Lewy body dementia. Brain 2012;135:2789-97.

56. Kou L, Chi X, Sun Y, et al. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome. J Neuroinflammation 2022;19:133.

57. Liu WW, Wei SZ, Huang GD, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J 2020;34:6570-81.

58. Lauretti E, Di Meco A, Merali S, Praticò D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol Psychiatry 2017;22:280-6.

59. Kanan MF, Sheehan PW, Haines JN, et al. Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration. JCI Insight 2024;9:e162771.

60. Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 2020;11:4411.

61. Kamagata K, Andica C, Takabayashi K, et al. Alzheimer’s Disease Neuroimaging Initiative. Association of MRI Indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease. Neurology 2022;99:e2648-60.

62. Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science 2020;369:eaax4063.

63. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012;4:147ra111.

64. Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022;21:763-79.

65. Munk AS, Wang W, Bèchet NB, et al. PDGF-B is required for development of the glymphatic system. Cell Rep 2019;26:2955-69.e3.

66. Klostranec JM, Vucevic D, Bhatia KD, et al. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part I-Anatomy and Physiology. Radiology 2021;301:502-14.

67. Berry RB, Brooks R, Gamaldo CE, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Darien, Illinois, American Academy of Sleep Medicine. 2012;176(2012):7. https://aasm.org/resources/pdf/scoring-manual-preface.pdf.

68. Peever J, Fuller PM. The Biology of REM Sleep. Curr Biol 2017;27:R1237-48.

69. Aserinsky E, Kleitman N. Two types of ocular motility occurring in sleep. J Appl Physiol 1955;8:1-10.

70. Malhotra RK, Avidan AY. Chapter 3 - Sleep Stages and Scoring Technique. In: Atlas of Sleep Medicine. Elsevier; 2014. pp. 77-99.

71. Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: from the cell to the clinic. Sleep Med Rev 2018;41:113-32.

72. Berry RB, Brooks R, Gamaldo C, et al. AASM Scoring Manual Updates for 2017 (Version 2.4). J Clin Sleep Med 2017;13:665-6.

73. Rodriguez AV, Funk CM, Vyazovskiy VV, Nir Y, Tononi G, Cirelli C. Why does sleep slow-wave activity increase after extended wake? Assessing the effects of increased cortical firing during wake and sleep. J Neurosci 2016;36:12436-47.

74. Shpirer I, Miniovitz A, Klein C, et al. Excessive daytime sleepiness in patients with Parkinson’s disease: a polysomnography study. Mov Disord 2006;21:1432-8.

75. Cochen De Cock V, Abouda M, Leu S, et al. Is obstructive sleep apnea a problem in Parkinson’s disease? Sleep Med 2010;11:247-52.

76. Zhang Y, Ren R, Sanford LD, et al. Sleep in Parkinson’s disease: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 2020;51:101281.

77. De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev 2003;7:423-40.

78. Diederich NJ, Vaillant M, Mancuso G, Lyen P, Tiete J. Progressive sleep “destructuring” in Parkinson’s disease. A polysomnographic study in 46 patients. Sleep Med 2005;6:313-8.

79. O’Dowd S, Galna B, Morris R, et al. Poor sleep quality and progression of gait impairment in an incident Parkinson’s disease cohort. J Parkinsons Dis 2017;7:465-70.

80. Schreiner SJ, Imbach LL, Werth E, et al. Slow-wave sleep and motor progression in Parkinson disease. Ann Neurol 2019;85:765-70.

81. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342:373-7.

82. Liu DX, He X, Wu D, et al. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci Lett 2017;653:189-94.

83. Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023;20:62.

84. Dunlap JC. Molecular bases for circadian clocks. Cell 1999;96:271-90.

85. Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 2018;19:453-69.

86. Rainey-Smith SR, Mazzucchelli GN, Villemagne VL, et al. AIBL Research Group. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl Psychiatry 2018;8:47.

87. Larsen SM, Landolt HP, Berger W, Nedergaard M, Knudsen GM, Holst SC. Haplotype of the astrocytic water channel AQP4 is associated with slow wave energy regulation in human NREM sleep. PLoS Biol 2020;18:e3000623.

88. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 2003;4:49-60.

89. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016;594:5749-68.

90. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The glymphatic system and waste clearance with brain aging: A Review. Gerontology 2019;65:106-19.

91. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014;76:845-61.

92. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 2016;93:215-25.

93. Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A. Expression of Aquaporin 1 and Aquaporin 4 in the Temporal Neocortex of Patients with Parkinson’s Disease. Brain Pathol 2017;27:160-8.

94. Jiang M, Fang Y, Dai S, et al. The effects of AQP4 rs162009 on resting-state brain activity in Parkinson’s disease. CNS Neurosci Ther 2023;29:2645-55.

95. Sun X, Tian Q, Yang Z, et al. Association of AQP4 single nucleotide polymorphisms (rs335929 and rs2075575) with Parkinson’s disease: A case-control study. Neurosci Lett 2023;797:137062.

96. Olson EB Jr, Vidruk EH, Dempsey JA. Carotid body excision significantly changes ventilatory control in awake rats. J Appl Physiol (1985) 1988;64:666-71.

97. Si X, Dai S, Fang Y, et al. Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson’s disease. J Adv Res 2024;56:125-36.

98. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337-41.

99. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212:991-9.

100. Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 2021;27:411-8.

101. Liu Z, Huang Y, Wang X, et al. The cervical lymph node contributes to peripheral inflammation related to Parkinson’s disease. J Neuroinflammation 2023;20:93.

102. Zhang J, Yang B, Sun H, et al. Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson’s disease. Neurosci Lett 2016;614:7-15.

103. Küppers E, Gleiser C, Brito V, et al. AQP4 expression in striatal primary cultures is regulated by dopamine--implications for proliferation of astrocytes. Eur J Neurosci 2008;28:2173-82.

104. Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO. Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem Res 2015;40:2600-14.

105. Bae YJ, Kim JM, Choi BS, et al. Altered brain glymphatic flow at diffusion-tensor mri in rapid eye movement sleep behavior disorder. Radiology 2023;307:e221848.

106. Qin Y, He R, Chen J, et al. Neuroimaging uncovers distinct relationships of glymphatic dysfunction and motor symptoms in Parkinson’s disease. J Neurol 2023;270:2649-58.

107. Bae YJ, Kim JM, Choi BS, et al. Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat Disord 2023;114:105767.

108. He P, Shi L, Li Y, et al. The association of the glymphatic function with Parkinson’s disease symptoms: neuroimaging evidence from longitudinal and cross-sectional studies. Ann Neurol 2023;94:672-83.

109. Meng JC, Shen MQ, Lu YL, et al. Correlation of glymphatic system abnormalities with Parkinson’s disease progression: a clinical study based on non-invasive fMRI. J Neurol 2024;271:457-71.

110. Gu L, Dai S, Guo T, et al. Noninvasive neuroimaging provides evidence for deterioration of the glymphatic system in Parkinson’s disease relative to essential tremor. Parkinsonism Relat Disord 2023;107:105254.

111. Donahue EK, Foreman RP, Duran JJ, et al. Increased perivascular space volume in white matter and basal ganglia is associated with cognition in Parkinson’s Disease. Brain Imaging Behav 2024;18:57-65.

112. Jeong SH, Park CJ, Jeong HJ, et al. Association of choroid plexus volume with motor symptoms and dopaminergic degeneration in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2023;94:1047-55.

113. Jeong SH, Jeong HJ, Sunwoo MK, et al. Association between choroid plexus volume and cognition in Parkinson disease. Eur J Neurol 2023;30:3114-23.

114. Denison HJ, Jameson KA, Sayer AA, et al. Poor sleep quality and physical performance in older adults. Sleep Health 2021;7:205-11.

115. Iranzo A, Fernández-Arcos A, Tolosa E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014;9:e89741.

116. Morawska MM, Moreira CG, Ginde VR, et al. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease. Sci Transl Med 2021;13:eabe7099.

117. Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019;366:628-31.

118. Cruz-Sanabria F, Carmassi C, Bruno S, et al. Melatonin as a chronobiotic with sleep-promoting properties. Curr Neuropharmacol 2023;21:951-87.

119. Pappolla MA, Matsubara E, Vidal R, et al. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 2018;15:637-42.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/