REFERENCES
1. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009;10:724-35.
2. Herculano-Houzel S. Not all brains are made the same: new views on brain scaling in evolution. Brain Behav Evol 2011;78:22-36.
3. Aslanger E. The evolution of the cardiovascular system: a hemodynamic perspective. Turk Kardiyol Dern Ars 2022;50:518-26.
4. Druelle F, Aerts P, Berillon G. The origin of bipedality as the result of a developmental by-product: the case study of the olive baboon (Papio anubis). J Hum Evol 2017;113:155-61.
5. Schmitt D. Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 2003;206:1437-48.
6. Strick PL, Dum RP, Rathelot JA. The cortical motor areas and the emergence of motor skills: a neuroanatomical perspective. Annu Rev Neurosci 2021;44:425-47.
7. Diederich NJ, Uchihara T, Grillner S, Goetz CG. The evolution-driven signature of Parkinson’s disease. Trends Neurosci 2020;43:475-92.
8. Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 1992;38:35-56.
9. Takahashi M, Nakajima T, Takakusaki K. Preceding postural control in forelimb reaching movements in cats. Front Syst Neurosci 2021;15:792665.
11. Grillner S, El Manira A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev 2020;100:271-320.
12. Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006;86:89-154.
13. Donkelaar HJ. Chapter 20: Reptiles. In: Nieuwenhuys R, Donkelaar HJ, Nicholson C, editors. The central nervous system of vertebrates. Berlin, Heidelberg: Springer; 1998. pp. 1315-24.
14. Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci 2007;1104:229-49.
16. Jiang P, Chiba R, Takakusaki K, Ota J. Generation of the human biped stance by a neural controller able to compensate neurological time delay. PLoS One 2016;11:e0163212.
18. Sauerland EK, Nakamura Y, Clemente CD. The role of the lower brain stem in cortically induced inhibition of somatic reflexes in the cat. Brain Res 1967;6:164-80.
19. Ganguly J, Kulshreshtha D, Almotiri M, Jog M. Muscle tone physiology and abnormalities. Toxins 2021;13:282.
20. Peters R. Ageing and the brain: this article is part of a series on ageing edited by Professor Chris Bulpitt. Postgrad Med J 2006;82:84-8.
21. DeCarli C, Massaro J, Harvey D, et al. Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 2005;26:491-510.
22. Blinkouskaya Y, Weickenmeier J. Brain shape changes associated with cerebral atrophy in healthy aging and Alzheimer’s disease. Front Mech Eng 2021;7:705653.
23. Iida MA, Farrell K, Walker JM, et al. Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 2021;9:134.
24. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318:121-34.
25. Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022;214:102270.
26. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-59.
27. Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017;18:101-13.
28. Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022;13:330-43.
29. Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) pathway: from metabolism to neuropsychiatry. Curr Neuropharmacol 2021;19:591-609.
30. Aksoz BE, Aksoz E. Vital role of monoamine oxidases and cholinesterases in central nervous system drug research: a sharp dissection of the pathophysiology. Comb Chem High Throughput Screen 2020;23:877-86.
31. Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm 2016;123:695-729.
32. Mena-Segovia J, Bolam JP. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 2017;94:7-18.
33. Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat 2011;5:22.
34. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308.
35. Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr Biol 2018;28:884-901.e3.
36. Fougère M, van der Zouwen CI, Boutin J, Neszvecsko K, Sarret P, Ryczko D. Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2021;118:e2110934118.
37. Caggiano V, Leiras R, Goñi-Erro H, et al. Midbrain circuits that set locomotor speed and gait selection. Nature 2018;553:455-60.
38. Karachi C, André A, Bertasi E, Bardinet E, Lehéricy S, Bernard FA. Functional parcellation of the lateral mesencephalus. J Neurosci 2012;32:9396-401.
39. Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG. Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 2008;57:183-91.
40. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187.
41. Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron 2017;93:747-65.
42. Rolland AS, Tandé D, Herrero MT, et al. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J Neurochem 2009;110:1321-9.
43. Semba K. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 1993;330:543-56.
44. Leonard CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-30.
45. Ryczko D, Dubuc R. Dopamine and the brainstem locomotor networks: from lamprey to human. Front Neurosci 2017;11:295.
46. Jahn K, Deutschländer A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 2008;39:786-92.
47. Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 1994;35:619-21.
48. Hamani C, Aziz T, Bloem BR, et al. Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical anatomy and terminology. Stereotact Funct Neurosurg 2016;94:298-306.
49. Li M, Zhang W. Oscillations in pedunculopontine nucleus in Parkinson’s disease and its relationship with deep brain stimulation. Front Neural Circuits 2015;9:47.
50. Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Adv Robot 2017;31:2-23.
51. Takakusaki K, Takahashi M, Noguchi T, Chiba R. Neurophysiological mechanisms of gait disturbance in advanced Parkinson’s disease patients. Neurol Clin Neurosci 2023;11:201-17.
52. Takakusaki K, Kohyama J, Matsuyama K. Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 2003;121:731-46.
53. Holtzer R, Kraut R, Izzetoglu M, Ye K. The effect of fear of falling on prefrontal cortex activation and efficiency during walking in older adults. Geroscience 2019;41:89-100.
54. Takakusaki K, Shimoda N, Matsuyama K, Mori S. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 1994;99:361-74.
55. Keshner EA, Cohen H. Current concepts of the vestibular system reviewed: 1. The role of the vestibulospinal system in postural control. Am J Occup Ther 1989;43:320-30.
56. Kaminishi K, Chiba R, Takakusaki K, Ota J. Increase in muscle tone promotes the use of ankle strategies during perturbed stance. Gait Posture 2021;90:67-72.
57. Omura Y, Kaminishi K, Chiba R, Takakusaki K, Ota J. A neural controller model considering the vestibulospinal tract in human postural control. Front Comput Neurosci 2022;16:785099.
58. May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 2006;151:321-78.
59. Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021;31:R741-62.
60. Peterson BW, Fukushima K, Hirai N, Schor RH, Wilson VJ. Responses of vestibulospinal and reticulospinal neurons to sinusoidal vestibular stimulation. J Neurophysiol 1980;43:1236-50.
61. Grantyn A, Berthoz A. Burst activity of identified tecto-reticulo-spinal neurons in the alert cat. Exp Brain Res 1985;57:417-21.
62. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014;137:1394-409.
63. Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018;120:53-77.
64. McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008;57:134-46.
65. Jankowska E. Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 1992;38:335-78.
66. Matsuyama K, Nakajima K, Mori F, Aoki M, Mori S. Lumbar commissural interneurons with reticulospinal inputs in the cat: morphology and discharge patterns during fictive locomotion. J Comp Neurol 2004;474:546-61.
67. Forssberg H, Grillner S, Rossignol S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 1975;85:103-7.
69. Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine release in the cat lumbar spinal cord during fictive locomotion evoked by the mesencephalic locomotor region. Front Neural Circuits 2017;11:59.
70. Westlund KN, Zhang D, Carlton SM, Sorkin LS, Willis WD. Noradrenergic innervation of somatosensory thalamus and spinal cord. Prog Brain Res 1991;88:77-88.
71. Bannister K, Dickenson AH. What do monoamines do in pain modulation? Curr Opin Support Palliat Care 2016;10:143-8.
73. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci 2011;12:217-30.
74. Chancel M, Iriye H, Ehrsson HH. Causal inference of body ownership in the posterior parietal cortex. J Neurosci 2022;42:7131-43.
75. Frith CD, Blakemore SJ, Wolpert DM. Abnormalities in the awareness and control of action. Philos Trans R Soc Lond B Biol Sci 2000;355:1771-88.
76. Lopez C, Falconer CJ, Deroualle D, Mast FW. In the presence of others: self-location, balance control and vestibular processing. Neurophysiol Clin 2015;45:241-54.
77. Blanke O, Slater M, Serino A. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 2015;88:145-66.
78. Medendorp WP, Heed T. State estimation in posterior parietal cortex: distinct poles of environmental and bodily states. Prog Neurobiol 2019;183:101691.
79. Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021;226:2967-88.
80. Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 2012;48:58-81.
81. Lavenex P, Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 2002;447:394-420.
82. Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci 2010;14:154-61.
83. Ide JS, Li CS. A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage 2011;54:455-64.
84. Ullsperger M, King JA. Proactive and reactive recruitment of cognitive control: comment on Hikosaka and Isoda. Trends Cogn Sci 2010;14:191-2.
85. Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022;47:72-89.
86. Zamani A, Carhart-Harris R, Christoff K. Prefrontal contributions to the stability and variability of thought and conscious experience. Neuropsychopharmacology 2022;47:329-48.
87. Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol 2019;56:1137-66.
88. Holstege G. The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J Comp Neurol 2009;513:559-65.
89. Lefler Y, Campagner D, Branco T. The role of the periaqueductal gray in escape behavior. Curr Opin Neurobiol 2020;60:115-21.
90. Keay KA, Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 2001;25:669-78.
91. Price JL, Carmichael ST, Drevets WC. Chapter 31 Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 1996;107:523-36.
92. Berridge KC, Kringelbach ML. Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol 2013;23:294-303.
93. Tanji J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 2001;24:631-51.
94. Forstmann BU, Dutilh G, Brown S, et al. Striatum and pre-SMA facilitate decision-making under time pressure. Proc Natl Acad Sci U S A 2008;105:17538-42.
95. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 2011;12:154-67.
96. Godschalk M, Mitz AR, van Duin B, van der Burg H. Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 1995;23:269-79.
97. Chainay H, Krainik A, Tanguy ML, Gerardin E, Le Bihan D, Lehéricy S. Foot, face and hand representation in the human supplementary motor area. Neuroreport 2004;15:765-9.
98. Stepniewska I, Preuss TM, Kaas JH. Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys. J Comp Neurol 2006;495:691-708.
99. Roland PE, Larsen B, Lassen NA, Skinhøj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980;43:118-36.
100. Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol Behav 2002;77:677-82.
101. Dum RP, Strick PL. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 2005;25:1375-86.
102. Nakajima T, Hosaka R, Mushiake H. Complementary roles of primate dorsal premotor and pre-supplementary motor areas to the control of motor sequences. J Neurosci 2022;42:6946-65.
103. Roger E, Banjac S, Thiebaut de Schotten M, Baciu M. Missing links: the functional unification of language and memory (L∪M). Neurosci Biobehav Rev 2022;133:104489.
104. Palmisciano P, Haider AS, Balasubramanian K, et al. Supplementary motor area syndrome after brain tumor surgery: a systematic review. World Neurosurg 2022;165:160-71.e2.
106. Seghezzi S, Zapparoli L. Predicting the sensory consequences of self-generated actions: pre-supplementary motor area as supra-modal hub in the sense of agency experience. Brain Sci 2020;10:825.
107. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G. Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 1997;78:2226-30.
108. Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 1998;402:327-352.
109. Hanakawa T, Fukuyama H, Katsumi Y, Honda M, Shibasaki H. Enhanced lateral premotor activity during paradoxical gait in Parkinson’s disease. Ann Neurol 1999;45:329-36.
110. Freedman EG. Coordination of the eyes and head during visual orienting. Exp Brain Res 2008;190:369-87.
111. Hollands MA, Patla AE, Vickers JN. “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 2002;143:221-30.
112. Higuchi T. Visuomotor control of human adaptive locomotion: understanding the anticipatory nature. Front Psychol 2013;4:277.
113. Uiga L, Cheng KC, Wilson MR, Masters RS, Capio CM. Acquiring visual information for locomotion by older adults: a systematic review. Ageing Res Rev 2015;20:24-34.
114. Ellmers TJ, Cocks AJ, Kal EC, Young WR. Conscious movement processing, fall-related anxiety, and the visuomotor control of locomotion in older adults. J Gerontol B Psychol Sci Soc Sci 2020;75:1911-20.
115. Abzug ZM, Sommer MA. Neuronal correlates of serial decision-making in the supplementary eye field. J Neurosci 2018;38:7280-92.
116. Stuphorn V. The role of supplementary eye field in goal-directed behavior. J Physiol Paris 2015;109:118-28.
117. Brandt T, Dieterich M. Thalamocortical network: a core structure for integrative multimodal vestibular functions. Curr Opin Neurol 2019;32:154-64.
118. Dieterich M, Brandt T. The bilateral central vestibular system: its pathways, functions, and disorders. Ann N Y Acad Sci 2015;1343:10-26.
119. Akbarian S, Grüsser OJ, Guldin WO. Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields. J Comp Neurol 1993;332:89-104.
120. Akbarian S, Grüsser OJ, Guldin WO. Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 1994;339:421-37.
121. Distler C, Hoffmann KP. Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (macaca mulatta). J Comp Neurol 2015;523:2390-408.
122. Helminski JO, Segraves MA. Macaque frontal eye field input to saccade-related neurons in the superior colliculus. J Neurophysiol 2003;90:1046-62.
123. Colby CL, Duhamel JR. Spatial representations for action in parietal cortex. Brain Res Cogn Brain Res 1996;5:105-15.
124. Tanaka M, Lisberger SG. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. II. Relation to vector averaging pursuit. J Neurophysiol 2002;87:2700-14.
125. Osborne LC, Bialek W, Lisberger SG. Time course of information about motion direction in visual area MT of macaque monkeys. J Neurosci 2004;24:3210-22.
126. Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 1995;5:95-110.
127. Houk JC, Bastianen C, Fansler D, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 2007;362:1573-83.
128. Jacobs JV, Lou JS, Kraakevik JA, Horak FB. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 2009;164:877-85.
129. Viallet F, Massion J, Massarino R, Khalil R. Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 1992;88:674-84.
130. Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 1989;74:311-8.
131. Moon HI, Pyun SB, Tae WS, Kwon HK. Neural substrates of lower extremity motor, balance, and gait function after supratentorial stroke using voxel-based lesion symptom mapping. Neuroradiology 2016;58:723-31.
132. Fisher KM, Zaaimi B, Edgley SA, Baker SN. Extensive cortical convergence to primate reticulospinal pathways. J Neurosci 2021;41:1005-18.
133. Fregosi M, Contestabile A, Hamadjida A, Rouiller EM. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys. Eur J Neurosci 2017;45:1379-95.
134. Darling WG, Ge J, Stilwell-Morecraft KS, Rotella DL, Pizzimenti MA, Morecraft RJ. Hand motor recovery following extensive frontoparietal cortical injury is accompanied by upregulated corticoreticular projections in monkey. J Neurosci 2018;38:6323-39.
135. Boyne P, DiFrancesco M, Awosika OO, Williamson B, Vannest J. Mapping the human corticoreticular pathway with multimodal delineation of the gigantocellular reticular nucleus and high-resolution diffusion tractography. J Neurol Sci 2022;434:120091.
136. Ko SH, Kim T, Min JH, Kim M, Ko HY, Shin YI. Corticoreticular pathway in post-stroke spasticity: a diffusion tensor imaging study. J Pers Med 2021;11:1151.
137. Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci 2009;29:4993-9.
140. Aravamuthan BR, McNab JA, Miller KL, et al. Cortical and subcortical connections within the pedunculopontine nucleus of the primate Macaca mulatta determined using probabilistic diffusion tractography. J Clin Neurosci 2009;16:413-20.
141. Del Arco A, Mora F. Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders. J Neural Transm 2009;116:941-52.
142. Ide JS, Li CS. Error-related functional connectivity of the habenula in humans. Front Hum Neurosci 2011;5:25.
143. Pennartz CM, Ito R, Verschure PF, Battaglia FP, Robbins TW. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci 2011;34:548-59.
144. Peterburs J, Desmond JE. The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol 2016;40:38-44.
145. Peterburs J, Hofmann D, Becker MPI, Nitsch AM, Miltner WHR, Straube T. The role of the cerebellum for feedback processing and behavioral switching in a reversal-learning task. Brain Cogn 2018;125:142-8.
146. Brockett AT, Vázquez D, Roesch MR. Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behav Brain Res 2021;404:113176.
147. Delval A, Tard C, Defebvre L. Why we should study gait initiation in Parkinson’s disease. Neurophysiol Clin 2014;44:69-76.
148. Lagravinese G, Pelosin E, Bonassi G, Carbone F, Abbruzzese G, Avanzino L. Gait initiation is influenced by emotion processing in Parkinson’s disease patients with freezing. Mov Disord 2018;33:609-17.
149. Schenberg LC, Póvoa RM, Costa AL, Caldellas AV, Tufik S, Bittencourt AS. Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 2005;29:1279-98.
150. Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for state-dependent modulation of locomotion. Front Hum Neurosci 2021;15:745689.
151. Shi W, Xue M, Wu F, et al. Whole-brain mapping of efferent projections of the anterior cingulate cortex in adult male mice. Mol Pain 2022;18:17448069221094529.
152. Ospina JP, Jalilianhasanpour R, Perez DL. The role of the anterior and midcingulate cortex in the neurobiology of functional neurologic disorder. Handb Clin Neurol 2019;166:267-79.
153. Hua JPY, Trull TJ, Merrill AM, Tidwell EA, Kerns JG. Functional connectivity between the ventral anterior cingulate and amygdala during implicit emotional conflict regulation and daily-life emotion dysregulation. Neuropsychologia 2021;158:107905.
154. Maeda K, Kunimatsu J, Hikosaka O. Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol 2018;16:e2005339.
157. Isa K, Tokuoka K, Ikeda S, et al. Amygdala underlies the environment dependency of defense responses induced via superior colliculus. Front Neural Circuits 2021;15:768647.
158. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 2002;43:111-7.
159. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357-81.
160. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007;64:20-4.
161. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80:953-78.
162. Takakusaki K, Obara K, Nozu T, Okumura T. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 2011;149:385-405.
163. Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron 2008;60:543-54.
165. Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 2016;17:183-95.
166. Flace P, Livrea P, Basile GA, et al. The cerebellar dopaminergic system. Front Syst Neurosci 2021;15:650614.
167. Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 2010;11:760-72.
169. Stecina K, Fedirchuk B, Hultborn H. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol 2013;591:5433-43.
170. Hikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Curr Opin Neurobiol 2002;12:217-22.
171. Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci 2004;24:4491-7.
172. Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Age-related change in mobility: perspectives from life course epidemiology and geroscience. J Gerontol A Biol Sci Med Sci 2016;71:1184-94.
173. Perera S, Patel KV, Rosano C, et al. Gait speed predicts incident disability: a pooled analysis. J Gerontol A Biol Sci Med Sci 2016;71:63-71.
174. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord 2008;23:329-42.
175. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002;16:1-14.
176. Sui SX, Hendy AM, Teo WP, Moran JT, Nuzum ND, Pasco JA. A review of the measurement of the neurology of gait in cognitive dysfunction or dementia, focusing on the application of fNIRS during dual-task gait assessment. Brain Sci 2022;12:968.
177. Verghese J, LeValley A, Hall CB, Katz MJ, Ambrose AF, Lipton RB. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc 2006;54:255-61.
178. Galna B, Peters A, Murphy AT, Morris ME. Obstacle crossing deficits in older adults: a systematic review. Gait Posture 2009;30:270-5.
179. Adzhar MA, Manlapaz D, Singh DKA, Mesbah N. Exercise to improve postural stability in older adults with Alzheimer’s disease: a systematic review of randomized control trials. Int J Environ Res Public Health 2022;19:10350.
180. Dubbeldam R, Lee YY, Pennone J, Mochizuki L, Le Mouel C. Systematic review of candidate prognostic factors for falling in older adults identified from motion analysis of challenging walking tasks. Eur Rev Aging Phys Act 2023;20:2.
181. Mielke MM, Roberts RO, Savica R, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 2013;68:929-37.
182. Dumurgier J, Artaud F, Touraine C, et al. Gait speed and decline in gait speed as predictors of incident dementia. J Gerontol A Biol Sci Med Sci 2017;72:655-61.
183. Skillbäck T, Blennow K, Zetterberg H, et al. Slowing gait speed precedes cognitive decline by several years. Alzheimers Dement 2022;18:1667-76.
184. Dougherty RJ, Ramachandran J, Liu F, et al. Association of walking energetics with amyloid beta status: Findings from the Baltimore Longitudinal Study of Aging. Alzheimers Dement 2021;13:e12228.
186. Iqbal K, Hasanain M, Ahmed J, et al. Association of motoric cognitive risk syndrome with cardiovascular and noncardiovascular factors: a systematic review and meta-analysis. J Am Med Dir Assoc 2022;23:810-22.
187. Teramoto H, Morita A, Ninomiya S, Shiota H, Kamei S. Relation between freezing of gait and frontal function in Parkinson’s disease. Parkinsonism Relat Disord 2014;20:1046-9.
188. Brugger F, Abela E, Hägele-Link S, Bohlhalter S, Galovic M, Kägi G. Do executive dysfunction and freezing of gait in Parkinson’s disease share the same neuroanatomical correlates? J Neurol Sci 2015;356:184-7.
189. Rubino A, Assogna F, Piras F, et al. Does a volume reduction of the parietal lobe contribute to freezing of gait in Parkinson’s disease? Parkinsonism Relat Disord 2014;20:1101-3.
190. Ruan X, Li Y, Li E, et al. Impaired topographical organization of functional brain networks in Parkinson’s disease patients with freezing of gait. Front Aging Neurosci 2020;12:580564.
191. Kantarci K, Avula R, Senjem ML, et al. Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 2010;74:1814-21.
192. Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 2012;11:868-77.
193. Oh C, Morris RJ, LaPointe LL, Stierwalt JAG. Spatial-temporal parameters of gait associated with Alzheimer disease: a longitudinal analysis. J Geriatr Psychiatry Neurol 2021;34:46-59.
194. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-44.
195. Vervoort G, Heremans E, Bengevoord A, et al. Dual-task-related neural connectivity changes in patients with Parkinson’ disease. Neuroscience 2016;317:36-46.
196. Naismith SL, Shine JM, Lewis SJ. The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov Disord 2010;25:1000-4.
197. Vandenbossche J, Deroost N, Soetens E, et al. Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil Neural Repair 2011;25:765-73.
198. Cohen RG, Klein KA, Nomura M, et al. Inhibition, executive function, and freezing of gait. J Parkinsons Dis 2014;4:111-22.
199. Mohammadi F, Bruijn SM, Vervoort G, et al. Motor switching and motor adaptation deficits contribute to freezing of gait in Parkinson’s disease. Neurorehabil Neural Repair 2015;29:132-42.
200. Smulders K, Esselink RA, Bloem BR, Cools R. Freezing of gait in Parkinson’s disease is related to impaired motor switching during stepping. Mov Disord 2015;30:1090-7.
202. DiGirolamo GJ, Kramer AF, Barad V, et al. General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport 2001;12:2065-71.
203. Rushworth MFS, Hadland KA, Paus T, Sipila PK. Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 2002;87:2577-92.
204. Ragozzino ME. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 2007;1121:355-75.
205. Schmitz TW, Zaborszky L. Spatial topography of the basal forebrain cholinergic projections: organization and vulnerability to degeneration. Handb Clin Neurol 2021;179:159-73.
206. Umeoka S, Baba K, Terada K, et al. Bilateral symmetric tonic posturing suggesting propagation to the supplementary motor area in a patient with precuneate cortical dysplasia. Epileptic Disord 2007;9:443-8.
207. Sala S, Francescani A, Spinnler H. Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry 2002;72:77-85.
208. Yeo SS, Kim SH, Jang SH. Proximal weakness due to injury of the corticoreticular pathway in a patient with traumatic brain injury. NeuroRehabilitation 2013;32:665-9.
209. Kwon HG, Jang SH. Delayed gait disturbance due to injury of the corticoreticular pathway in a patient with mild traumatic brain injury. Brain Inj 2014;28:511-4.
210. Yeo SS, Jang SH, Park GY, Oh S. Effects of injuries to descending motor pathways on restoration of gait in patients with pontine hemorrhage. J Stroke Cerebrovasc Dis 2020;29:104857.
211. Maffei V, Mazzarella E, Piras F, et al. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients. Cortex 2016;78:55-69.
212. Michel SF, Arias Carrión O, Correa TE, Alejandro PL, Micheli F. Pisa syndrome. Clin Neuropharmacol 2015;38:135-40.
213. Doherty KM, van de Warrenburg BP, Peralta MC, et al. Postural deformities in Parkinson’s disease. Lancet Neurol 2011;10:538-49.
214. Yeo SS, Jang SH, Oh S, Kwon JW. Role of diffusion tensor imaging in analyzing the neural connectivity of the parieto-insular vestibular cortex in pusher syndrome: As case report. Medicine (Baltimore) 2020;99:e19835.
215. Vaugoyeau M, Azulay JP. Role of sensory information in the control of postural orientation in Parkinson's disease. J Neurol Sci 2010;289:66-8.
216. Scocco DH, Wagner JN, Racosta J, Chade A, Gershanik OS. Subjective visual vertical in Pisa syndrome. Parkinsonism Relat Disord 2014;20:878-83.
217. van de Warrenburg BPC, Bhatia KP, Quinn NP. Pisa syndrome after unilateral pallidotomy in Parkinson’s disease: an unrecognised, delayed adverse event? J Neurol Neurosurg Psychiatry 2007;78:329-30.
218. Spanaki C, Zafeiris S, Plaitakis A. Levodopa-aggravated lateral flexion of the neck and trunk as a delayed phenomenon of unilateral pallidotomy. Mov Disord 2010;25:655-6.
219. Villarejo A, Camacho A, García-Ramos R, et al. Cholinergic-dopaminergic imbalance in Pisa syndrome. Clin Neuropharmacol 2003;26:119-21.
220. Kovacs GG, Lukic MJ, Irwin DJ, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 2020;140:99-119.
221. Jellinger KA. Pathomechanisms of cognitive impairment in progressive supranuclear palsy. J Neural Transm 2023;130:481-93.
222. Chen AL, Riley DE, King SA, et al. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Front Neurol 2010;1:147.
223. Nunomura H, Kasahara T, Hatano T, et al. Case report: Saccadic ping-pong gaze in progressive supranuclear palsy with predominant postural instability. Front Neurol 2023;14:1100931.
224. Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST. Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 1996;371:345-61.
225. Jellinger K. The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1988;51:540-3.
226. Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm 2004;111:1219-35.
227. Marsden CD. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 1982;32:514-39.
228. Ehgoetz Martens KA, Hall JM, Georgiades MJ, et al. The functional network signature of heterogeneity in freezing of gait. Brain 2018;141:1145-60.
229. McDade EM, Boot BP, Christianson TJ, et al. Subtle gait changes in patients with REM sleep behavior disorder. Mov Disord 2013;28:1847-53.
230. Louis EK, Boeve AR, Boeve BF. REM sleep behavior disorder in Parkinson’s disease and other synucleinopathies. Mov Disord 2017;32:645-58.
231. Howell MJ, Schenck CH. Rapid eye movement sleep behavior disorder and neurodegenerative disease. JAMA Neurol 2015;72:707-12.
232. Keloth SM, Arjunan SP, Raghav S, Kumar DK. Muscle activation strategies of people with early-stage Parkinson’s during walking. J Neuroeng Rehabil 2021;18:133.
233. Lang KC, Hackney ME, Ting LH, McKay JL. Antagonist muscle activity during reactive balance responses is elevated in Parkinson’s disease and in balance impairment. PLoS One 2019;14:e0211137.
235. Di Lazzaro G, Schirinzi T, Giambrone MP, et al. Pisa syndrome in Parkinson’s disease: evidence for bilateral vestibulospinal dysfunction. Parkinsons Dis 2018;2018:8673486.
236. Wellings TP, Brichta AM, Lim R. Altered neurofilament protein expression in the lateral vestibular nucleus in Parkinson’s disease. Exp Brain Res 2017;235:3695-708.
238. Boura E, Stamelou M, Vadasz D, et al. Is increased spinal nociception another hallmark for Parkinson’s disease? J Neurol 2017;264:570-5.
239. Perrotta A, Sandrini G, Serrao M, et al. Facilitated temporal summation of pain at spinal level in Parkinson’s disease. Mov Disord 2011;26:442-8.