fig3

Unraveling the tau puzzle: a review of mechanistic targets and therapeutic interventions to prevent tau pathology in Alzheimer's disease

Figure 3. Therapeutic pathways to mediate post-translational tau modifications. (A) GABAAR inhibitors bind to GABAAR to inhibit the hyperphosphorylation of tau[22,35]. GSK-3β inhibitors likewise block tau hyperphosphorylation[36-40]; (B) Acetylated tau exhibits lower levels of proteasomal degradation. SIRT1 promoters inhibit the acetylation of tau to enable pathologic tau degradation in the proteasome[69-71]; (C) Upregulation of 5-HT4 promotes the ubiquitination of tau to promote proteasomal breakdown on pathologic tau[69,72-74]; (D) Upregulation of O-GlcNAcase promotes the O-GlcNAcylation of tau to lower levels of tau hyperphosphorylation[34,75-77]; (E) The drugs LMTM and ACI-3024 inhibit tau aggregation[34,78-80]. Created with BioRender.com. GABAAR: γ-aminobutyric acid sub-type A receptor; GSK-3β: glycogen synthase kinase-3β; LMTM: leuco-methylthioninium bis(hydromethanesulphonate); SIRT1: Deacetylase protein sirtuin 1.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/