REFERENCES

1. Figueiredo F, Lopes-Marques M, Almeida B, et al. A robust assay to monitor ataxin-3 amyloid fibril assembly. Cells 2022;11:1969.

2. Toulis V, Casaroli-Marano R, Camós-Carreras A, et al. Altered retinal structure and function in Spinocerebellar ataxia type 3. Neurobiol Dis 2022;170:105774.

3. do Carmo Costa M, Paulson HL. Toward understanding Machado-Joseph disease. Prog Neurobiol 2012;97:239-57.

4. Orr HT. Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Curr Opin Genet Dev 2012;22:251-5.

5. Takiyama Y, Nishizawa M, Tanaka H, et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 1993;4:300-4.

6. Matos CA, de Macedo-Ribeiro S, Carvalho AL. Polyglutamine diseases: the special case of ataxin-3 and Machado-Joseph disease. Prog Neurobiol 2011;95:26-48.

7. Margolis RL, Ross CA. Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 2001;7:479-82.

8. Haas E, Incebacak RD, Hentrich T, et al. A novel SCA3 knock-in mouse model mimics the human SCA3 Disease phenotype including neuropathological, behavioral, and transcriptional abnormalities especially in oligodendrocytes. Mol Neurobiol 2022;59:495-522.

9. Paulson H, Shakkottai V. Spinocerebellar ataxia type 3. GeneReviews. 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1196/. [Last accessed on 6 Jun 2024].

10. Lima M, Costa MC, Montiel R, et al. Population genetics of wild-type CAG repeats in the Machado-Joseph disease gene in Portugal. Hum Hered 2005;60:156-63.

11. Ganev Y, Buhr TJ, Mahmood H. Manipulations of protective post-translational modifications of ataxin-3 as a possible treatment of SCA3. 2018. Available from: https://api.semanticscholar.org/CorpusID:195185159. [Last accessed on 6 Jun 2024].

12. Ricchelli F, Fusi P, Tortora P, et al. Destabilization of non-pathological variants of ataxin-3 by metal ions results in aggregation/fibrillogenesis. Int J Biochem Cell Biol 2007;39:966-77.

13. Marchal S, Shehi E, Harricane MC, et al. Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 2003;278:31554-63.

14. Gales L, Cortes L, Almeida C, et al. Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: trapping early oligomers of non-expanded ataxin-3. J Mol Biol 2005;353:642-54.

15. Ellisdon AM, Thomas B, Bottomley SP. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 2006;281:16888-96.

16. Masino L, Nicastro G, De Simone A, Calder L, Molloy J, Pastore A. The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys J 2011;100:2033-42.

17. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 2007;8:65.

18. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004;22:1302-6.

19. Maurer-Stroh S, Debulpaep M, Kuemmerer N, et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 2010;7:237-42.

20. Trovato A, Seno F, Tosatto SC. The PASTA server for protein aggregation prediction. Protein Eng Des Sel 2007;20:521-3.

21. Tartaglia GG, Vendruscolo M. The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 2008;37:1395-401.

22. Masino L, Nicastro G, Calder L, Vendruscolo M, Pastore A. Functional interactions as a survival strategy against abnormal aggregation. FASEB J 2011;25:45-54.

23. Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE. Examination of ataxin-3 (atx-3) aggregation by structural mass spectrometry techniques: a rationale for expedited aggregation upon polyglutamine (polyQ) expansion. Mol Cell Proteomics 2015;14:1241-53.

24. Deriu MA, Grasso G, Licandro G, et al. Investigation of the Josephin Domain protein-protein interaction by molecular dynamics. PLoS One 2014;9:e108677.

25. Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007;447:453-7.

26. Meng SR, Zhu YZ, Guo T, Liu XL, Chen J, Liang Y. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau. PLoS One 2012;7:e38903.

27. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 2006;103:4074-8.

28. Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 2010;107:3487-92.

29. Ivanova MI, Sievers SA, Guenther EL, et al. Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 2014;111:197-201.

30. Nelson R, Sawaya MR, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005;435:773-8.

31. Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 2000;97:10383-8.

32. Toyama BH, Weissman JS. Amyloid structure: conformational diversity and consequences. Annu Rev Biochem 2011;80:557-85.

33. Kannan R, Raju M, Sharma KK. The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming αA66-80 peptide in α-crystallin aggregation: a systematic proline replacement study. Amyloid 2014;21:103-9.

34. Chang HY, Lin JY, Lee HC, Wang HL, King CY. Strain-specific sequences required for yeast [PSI+] prion propagation. Proc Natl Acad Sci U S A 2008;105:13345-50.

35. Williams AD, Portelius E, Kheterpal I, et al. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 2004;335:833-42.

36. Tao H, Liu W, Simmons BN, Harris HK, Cox TC, Massiah MA. Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques 2010;48:61-4.

37. Fitzpatrick AWP, Falcon B, He S, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017;547:185-90.

38. Yang Y, Shi Y, Schweighauser M, et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 2022;610:791-5.

39. Hu JY, Zhang DL, Liu XL, et al. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochim Biophys Acta Mol Basis Dis 2017;1863:414-27.

40. Xu WC, Liang JZ, Li C, et al. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death Dis 2018;9:67.

41. Wang K, Liu JQ, Zhong T, et al. Phase separation and cytotoxicity of tau are modulated by protein disulfide isomerase and s-nitrosylation of this molecular chaperone. J Mol Biol 2020;432:2141-63.

42. Dai B, Zhong T, Chen ZX, et al. Myricetin slows liquid-liquid phase separation of Tau and activates ATG5-dependent autophagy to suppress Tau toxicity. J Biol Chem 2021;297:101222.

43. Teng PK, Eisenberg D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 2009;22:531-6.

44. Robertson AL, Headey SJ, Saunders HM, et al. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 2010;107:10424-9.

45. Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A. Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol 2004;344:1021-35.

46. Sicorello A, Różycki B, Konarev PV, Svergun DI, Pastore A. Capturing the conformational ensemble of the mixed folded polyglutamine protein ataxin-3. Structure 2021;29:70-81.e5.

47. Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM. Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem 2015;290:24190-200.

48. Nicastro G, Masino L, Esposito V, et al. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 2009;91:1203-14.

49. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci U S A 2005;102:10493-8.

50. Antony PMA, Mäntele S, Mollenkopf P, et al. Identification and functional dissection of localization signals within ataxin-3. Neurobiol Dis 2009;36:280-92.

51. Wang H, Ying Z, Wang G. Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains. J Biol Chem 2012;287:28576-85.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/