REFERENCES
1. Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018;17:939-53.
2. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51:745-52.
3. Chaudhuri KR, Martinez-Martin P, Schapira AH, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's disease: the NMSQuest study. Mov Disord 2006;21:916-23.
4. Zečević I. Clinical practice guidelines based on evidence for cognitive-behavioural therapy in Parkinson's disease comorbidities: a literature review. Clin Psychol Psychother 2020;27:504-14.
5. Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 2010;75:1062-9.
6. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov Disord 2008;23:837-44.
7. Duncan GW, Khoo TK, Yarnall AJ, et al. Health-related quality of life in early Parkinson's disease: the impact of nonmotor symptoms. Mov Disord 2014;29:195-202.
8. Goodarzi Z, Mrklas KJ, Roberts DJ, Jette N, Pringsheim T, Holroyd-Leduc J. Detecting depression in Parkinson disease: a systematic review and meta-analysis. Neurology 2016;87:426-37.
9. Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021;128:1577-98.
10. Genoud S, Senior AM, Hare DJ, Double KL. Meta-analysis of copper and iron in Parkinson's disease brain and biofluids. Mov Disord 2020;35:662-71.
11. Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 2006;5:145-52.
12. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018;13:757-72.
14. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018;154:204-19.
15. Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in Parkinson's disease. Mov Disord 2021;36:16-24.
16. de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010;51:391-405.
17. Paul S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 2008;30:1172-84.
18. Dobson CM. Protein aggregation and its consequences for human disease. Protein Pept Lett 2006;13:219-27.
19. Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 2017;86:27-68.
20. Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol 2006;16:127-36.
21. Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 2019;119:1221-322.
22. Youdim MB. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson's and Alzheimer's diseases as disease modifying agents. Exp Neurobiol 2010;19:1-14.
23. Van der Schyf CJ, Geldenhuys WJ. Multimodal drugs and their future for Alzheimer's and Parkinson's disease. Int Rev Neurobiol 2011;100:107-25.
24. Weinstock M, Bejar C, Wang R, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. In: Riederer P, Calne DB, Horowski R, Mizuno Y, Olanow CW, Poewe W, Youdim MBH, editors. Advances in Research on Neurodegeneration. Vienna: Springer; 2000. p. 157-69.
25. Weinstock M, Poltyrev T, Bejar C, Youdim MB. Effect of TV3326, a novel monoamine-oxidase cholinesterase inhibitor, in rat models of anxiety and depression. Psychopharmacology (Berl) 2002;160:318-24.
26. Weinreb O, Amit T, Bar-Am O, Youdim MB. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer's disease treatment. Curr Drug Targets 2012;13:483-94.
27. Weinstock M, Bejar C, Schorer-Apelbaum D, Panarsky R, Luques L, Shoham S. Dose-dependent effects of ladostigil on microglial activation and cognition in aged rats. J Neuroimmune Pharmacol 2013;8:345-55.
28. Schneider LS, Geffen Y, Rabinowitz J, et al. Ladostigil Study Group. Low-dose ladostigil for mild cognitive impairment: a phase 2 placebo-controlled clinical trial. Neurology 2019;93:e1474-84.
29. Liu W, Lang M, Youdim MBH, et al. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease. Neuropharmacology 2016;109:376-85.
30. Youdim MB, Bar Am O, Yogev-Falach M, et al. Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 2005;79:172-9.
31. Olanow CW, Rascol O, Hauser R, et al. ADAGIO Study Investigators. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med 2009;361:1268-78.
32. Hauser RA, Li R, Pérez A, et al. NINDS NET-PD Investigators. Longer duration of MAO-B inhibitor exposure is associated with less clinical decline in Parkinson's disease: an analysis of NET-PD LS1. J Parkinsons Dis 2017;7:117-27.
33. Knoll J. [History of deprenyl--the first selective inhibitor of monoamine oxidase type B]. Vopr Med Khim 1997;43:482-93.
34. Youdim MB. Rasagiline: an anti-Parkinson drug with neuroprotective activity. Expert Rev Neurother 2003;3:737-49.
35. Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MB. Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann N Y Acad Sci 2005;1053:348-55.
37. Kumar MJ, Andersen JK. Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol 2004;30:77-90.
38. Shemyakov SE. Monoamine oxidase activity, lipid peroxidation, and morphological changes in human hypothalamus during aging. Bull Exp Biol Med 2001;131:586-8.
39. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7:295-309.
40. Huot P. Monoamine oxidase A inhibition and Parkinson's disease. Neurodegener Dis Manag 2020;10:335-7.
41. Hamadjida A, Nuara SG, Frouni I, et al. Monoamine oxidase A inhibition as monotherapy reverses parkinsonism in the MPTP-lesioned marmoset. Naunyn Schmiedebergs Arch Pharmacol 2020;393:2139-44.
42. van der Hoek TC, Bus BA, Matui P, van der Marck MA, Esselink RA, Tendolkar I. Prevalence of depression in Parkinson's disease: effects of disease stage, motor subtype and gender. J Neurol Sci 2011;310:220-4.
43. Meyer JH, Wilson AA, Sagrati S, et al. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry 2009;66:1304-12.
44. Sacher J, Wilson AA, Houle S, et al. Elevated brain monoamine oxidase A binding in the early postpartum period. Arch Gen Psychiatry 2010;67:468-74.
45. Sacher J, Houle S, Parkes J, et al. Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John's wort: an [11C]-harmine PET study. J Psychiatry Neurosci 2011;36:375-82.
46. Mann JJ, Currier D. Medication in suicide prevention insights from neurobiology of suicidal behavior. In: Dwivedi Y, editor. The neurobiological basis of suicide. Boca Raton (FL): CRC Press/Taylor & Francis; 2012.
47. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965;122:509-22.
48. Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR. Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 1990;47:411-8.
49. Bymaster FP, McNamara RK, Tran PV. New approaches to developing antidepressants by enhancing monoaminergic neurotransmission. Expert Opin Investig Drugs 2003;12:531-43.
50. Lacombe S, Stanislav SW, Marken PA. Pharmacologic treatment of cocaine abuse. DICP 1991;25:818-23.
51. Miczek KA, Haney M. Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in mice. Psychopharmacology (Berl) 1994;115:358-65.
52. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with parkinsonism and anti-Parkinson drugs. Calcif Tissue Int 2007;81:153-61.
53. Krzymowski T, Stefanczyk-Krzymowska S. New facts and the concept of physiological regulation of the dopaminergic system function and its disorders. J Physiol Pharmacol 2015;66:331-41.
54. Liu W, Rabinovich A, Nash Y, et al. Anti-inflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells. Neuropharmacology 2017;113:445-56.
55. Monoamine oxidase inhibitors. Meyler's side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Elsevier; 2006. p. 2371-8.
56. Finberg JP, Tenne M. Relationship between tyramine potentiation and selective inhibition of monoamine oxidase types A and B in the rat vas deferens. Br J Pharmacol 1982;77:13-21.
57. Rudzik AD, Eble JN. The potentiation of pressor responses to tyramine by a number of amphetamine-like compounds. Proc Soc Exp Biol Med 1967;124:655-7.
58. Finberg JP, Lamensdorf I, Weinstock M, Schwartz M, Youdim MB. Pharmacology of rasagiline (N-propargyl-1R-aminoindan). Adv Neurol 1999;80:495-9.
59. Weinstock M, Gorodetsky E, Wang R, Gross A, Weinreb O, Youdim M. Limited potentiation of blood pressure response to oral tyramine by brain-selective monoamine oxidase A-B inhibitor, TV-3326 in conscious rabbits11Supported by Teva Pharmaceuticals Ltd (Israel). Neuropharmacology 2002;43:999-1005.
60. Gal S, Abassi ZA, Youdim MB. Limited potentiation of blood pressure in response to oral tyramine by the anti-Parkinson brain selective multifunctional monoamine oxidase-AB inhibitor, M30. Neurotox Res 2010;18:143-50.
61. Bar-Am O, Amit T, Kupershmidt L, et al. Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease and aging. Neurobiol Aging 2015;36:1529-42.
62. Tabet N. Acetylcholinesterase inhibitors for Alzheimer's disease: anti-inflammatories in acetylcholine clothing! Age Ageing 2006;35:336-8.
63. Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60:1745-8.
64. Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005;65:1716-22.
65. Kandiah N, Pai MC, Senanarong V, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia. Clin Interv Aging 2017;12:697-707.
66. Weinstock M. Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer's disease. CNS Drugs 1999;12:307-23.
67. Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer's disease by rivastigmine: correlation with cognitive benefit. J Neural Transm (Vienna) 2002;109:1053-65.
68. Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis 2002;9:88-93.
69. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 1978;4:273-7.
70. Mesulam M, Guillozet A, Shaw P, Levey A, Duysen E, Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002;110:627-39.
71. Greig NH, Utsuki T, Yu Q, et al. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 2001;17:159-65.
72. Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. Prim Care Companion CNS Disord 2013;15:PCC.
73. Darreh-Shori T, Almkvist O, Guan ZZ, et al. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 2002;59:563-72.
74. Müller T. Rivastigmine in the treatment of patients with Alzheimer's disease. Neuropsychiatr Dis Treat 2007;3:211-8.
75. Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999;31:53-9.
76. Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 2006;8:243-70.
78. Nicotra A. Monoamine oxidase expression during development and aging. NeuroToxicology 2004;25:155-65.
79. Riederer P. Monoamine oxidase-B inhibition in Alzheimer's disease. NeuroToxicology 2004;25:271-7.
80. Youdim MB, Buccafusco JJ. CNS targets for multi-functional drugs in the treatment of Alzheimer's and Parkinson's diseases. J Neural Transm (Vienna) 2005;112:519-37.
81. Xiao XQ, Lee NT, Carlier PR, Pang Y, Han YF. Bis(7)-tacrine, a promising anti-Alzheimer's agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cells: comparison with tacrine. Neuroscience Letters 2000;290:197-200.
82. Schallreuter KU, Elwary S. Hydrogen peroxide regulates the cholinergic signal in a concentration dependent manner. Life Sci 2007;80:2221-6.
83. Xiao XQ, Yang JW, Tang XC. Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci Lett 1999;275:73-6.
84. Mortazavian SM, Parsaee H, Mousavi SH, Tayarani-Najaran Z, Ghorbani A, Sadeghnia HR. Acetylcholinesterase inhibitors promote angiogenesis in chick chorioallantoic membrane and inhibit apoptosis of endothelial cells. Int J Alzheimers Dis 2013;2013:121068.
85. Tyurina YY, Tyurin VA, Carta G, Quinn PJ, Schor NF, Kagan VE. Direct evidence for antioxidant effect of Bcl-2 in PC12 rat pheochromocytoma cells. Arch Biochem Biophys 1997;344:413-23.
86. Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M. Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 2001;78:727-35.
87. Godley BF, Jin GF, Guo YS, Hurst JS. Bcl-2 overexpression increases survival in human retinal pigment epithelial cells exposed to H(2)O(2). Exp Eye Res 2002;74:663-9.
88. Tran VV, Chen G, Newgard CB, Hohmeier HE. Discrete and complementary mechanisms of protection of beta-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes 2003;52:1423-32.
89. Jackson GR, Apffel L, Werrbach-Perez K, Perez-Polo JR. Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 1990;25:360-8.
90. Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 1995;65:1740-51.
91. Hirsch EC, Hunot S, Hartmann A. Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat Disord 2005;11 Suppl 1:S9-S15.
92. Clark BD, Collins KL, Gandy MS, Webb AC, Auron PE. Genomic sequence for human prointerleukin 1 beta: possible evolution from a reverse transcribed prointerleukin 1 alpha gene. Nucleic Acids Res 1986;14:7897-914.
93. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 2013;25:469-84.
94. Zhang YY, Fan YC, Wang M, Wang D, Li XH. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer's disease. Clin Interv Aging 2013;8:103-10.
95. Jabbari Azad F, Talaei A, Rafatpanah H, Yousefzadeh H, Jafari R, et al. Association between Cytokine production and disease severity in Alzheimer's disease. Iran J Allergy Asthma Immunol 2014;13:433-9.
97. Feng LL, Wu XF, Liu HL, et al. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes. Toxicol Appl Pharmacol 2013;267:167-73.
98. Henderson Z, Sherriff FE. Distribution of choline acetyltransferase immunoreactive axons and terminals in the rat and ferret brainstem. J Comp Neurol 1991;314:147-63.
99. Mahmoodi G, Ahmadi S, Pourmotabbed A, Oryan S, Zarrindast MR. Inhibitory avoidance memory deficit induced by scopolamine: interaction of cholinergic and glutamatergic systems in the ventral tegmental area. Neurobiol Learn Mem 2010;94:83-90.
100. Nielsen JA, Mena E, Williams IH, Nocerini MR, Liston D. Correlation of brain levels of 9-amino-1,2,3,4-tetrahydroacridine (THA) with neurochemical and behavioral changes. Eur J Pharmacol 1989;173:53-64.
101. Bejar C, Wang R, Weinstock M. Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 1999;383:231-40.
102. Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M. A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:555-61.
103. Buccafusco JJ, Terry AV Jr. Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. J Pharmacol Exp Ther 2000;295:438-46.