REFERENCES

1. Dutra, A. C. C.; Goldmann, B. A.; Islam, M. S.; Dawson, J. A. Understanding solid-state battery electrolytes using atomistic modelling and machine learning. Nat. Rev. Mater. 2025, 10, 566-83.

2. Chen, L.; Msigwa, G.; Yang, M.; et al. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 2022, 20, 2277-310.

3. Kalnaus, S.; Dudney, N. J.; Westover, A. S.; Herbert, E.; Hackney, S. Solid-state batteries: The critical role of mechanics. Science 2023, 381, eabg5998.

4. Li, Y.; Song, S.; Kim, H.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50-3.

5. Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy. 2023, 8, 230-40.

6. Kamaya, N.; Homma, K.; Yamakawa, Y.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-6.

7. Xiao, Y.; Wang, Y.; Bo, S.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2019, 5, 105-26.

8. Kwak, H.; Kim, J. S.; Han, D.; et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 2023, 14, 2459.

9. Cheng, E. J.; Yang, T.; Liu, Y.; et al. Correlation between mechanical properties and ionic conductivity of polycrystalline sodium superionic conductors: a relative density-dominant relationship. Mater. Today. Energy. 2024, 44, 101644.

10. Rajan, K. Materials informatics. Mater. Today. 2005, 8, 38-45.

11. Urban, A.; Seo, D.; Ceder, G. Computational understanding of Li-ion batteries. NPJ. Comput. Mater. 2016, 2, 16002.

12. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 2007, 46, 7778-81.

13. Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042-7.

14. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, e1803075.

15. Hirose, T.; Matsui, N.; Itoh, T.; et al. High-capacity, reversible hydrogen storage using H--conducting solid electrolytes. Science 2025, 389, 1252-5.

16. Zhao, F.; Zhang, S.; Wang, S.; et al. Anion sublattice design enables superionic conductivity in crystalline oxyhalides. Science 2025, 390, 199-204.

17. Aykol, M.; Herring, P.; Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 2020, 5, 725-7.

18. Lombardo, T.; Duquesnoy, M.; El-Bouysidy, H.; et al. Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 2022, 122, 10899-969.

19. Huang, S.; Cole, J. M. BatteryDataExtractor: battery-aware text-mining software embedded with BERT models. Chem. Sci. 2022, 13, 11487-95.

20. Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. NPJ. Comput. Mater. 2020, 6, 138.

21. Chen, H.; Liu, H.; Tew, Y.; Ren, X.; Tang, X.; Wang, X. Distilling knowledge from catalysis literature with long-context large language model agents. ACS. Catal. 2025, 15, 18244-54.

22. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.

23. Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547-55.

24. Jun, K.; Chen, Y.; Wei, G.; Yang, X.; Ceder, G. Diffusion mechanisms of fast lithium-ion conductors. Nat. Rev. Mater. 2024, 9, 887-905.

25. Sau, K.; Takagi, S.; Ikeshoji, T.; et al. Unlocking the secrets of ideal fast ion conductors for all-solid-state batteries. Commun. Mater. 2024, 5, 122.

26. Mo, Y.; Ong, S. P.; Ceder, G. First Principles Study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 2011, 24, 15-7.

27. Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K. N.; Cui, Y.; Reed, E. J. Holistic computational structure screening of more than 12,000 candidates for solid lithium-ion conductor materials. Energy. Environ. Sci. 2017, 10, 306-20.

28. Ahmad, Z.; Xie, T.; Maheshwari, C.; Grossman, J. C.; Viswanathan, V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS. Cent. Sci. 2018, 4, 996-1006.

29. Wang, Y.; Xie, T.; France-lanord, A.; et al. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Mater. 2020, 32, 4144-51.

30. Kahle, L.; Marcolongo, A.; Marzari, N. High-throughput computational screening for solid-state Li-ion conductors. Energy. Environ. Sci. 2020, 13, 928-48.

31. Funke, K. Solid state ionics: from Michael Faraday to green energy-the European dimension. Sci. Technol. Adv. Mater. 2013, 14, 043502.

32. Nernst, W.; Wild, W. Einiges über das Verhalten elektrolytischer Glühkörper. Zeitschrift. für. Elektrochemie. 2010, 7, 373-6. (in German).

33. Tubandt, C.; Lorenz, E. The molecular condition and electrical conductivity of crystallized salts. Z. Phys. Chem. 1914, 87, 513-42. (in German).

34. Wagner, C.; Schottky, W. Theorie der geordneten Mischphasen. Z. Phys. Chem. B. 1930, 163-210. (in German).

35. Yao, Y. F. Y.; Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453-75.

36. Takahashi, T.; Yamamoto, O.; Yamada, S.; Hayashi, S. Solid-state ionics: high copper ion conductivity of the system CuCl-CuI-RbCl. J. Electrochem. Soc. 2019, 126, 1654-8.

37. Goodenough, J.; Hong, H.; Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203-20.

38. Hong, H. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117-24.

39. Boukamp, B.; Huggins, R. Ionic conductivity in lithium imide. Phys. Lett. A. 1979, 72, 464-6.

40. Jansen, M.; Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid. State. Chem. 1992, 99, 110-9.

41. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid. State. Ionics. 2000, 130, 97-104.

42. Inaguma, Y.; Liquan, C.; Itoh, M.; et al. High ionic conductivity in lithium lanthanum titanate. Solid. State. Commun. 1993, 86, 689-93.

43. Chen, C. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid. State. Ionics. 2001, 144, 51-7.

44. Thangadurai, V.; Kaack, H.; Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 2004, 86, 437-40.

45. Verbraeken, M. C.; Suard, E.; Irvine, J. T. S. Structural and electrical properties of calcium and strontium hydrides. J. Mater. Chem. 2009, 19, 2766.

46. Verbraeken, M. C.; Cheung, C.; Suard, E.; Irvine, J. T. High H- ionic conductivity in barium hydride. Nat. Mater. 2015, 14, 95-100.

47. Kobayashi, G.; Hinuma, Y.; Matsuoka, S.; et al. Pure H- conduction in oxyhydrides. Science 2016, 351, 1314-7.

48. Takeiri, F.; Watanabe, A.; Okamoto, K.; et al. Hydride-ion-conducting K2NiF4-type Ba-Li oxyhydride solid electrolyte. Nat. Mater. 2022, 21, 325-30.

49. Zhang, W.; Cui, J.; Wang, S.; et al. Deforming lanthanum trihydride for superionic conduction. Nature 2023, 616, 73-6.

50. Cui, J.; Zou, R.; Zhang, W.; et al. A room temperature rechargeable all-solid-state hydride ion battery. Nature 2025, 646, 338-42.

51. Cheng, E. J.; Duan, H.; Wang, M. J.; et al. Li-stuffed garnet solid electrolytes: current status, challenges, and perspectives for practical Li-metal batteries. Energy. Storage. Mater. 2025, 75, 103970.

52. Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. NPJ. Comput. Mater. 2019, 5, 83.

53. Rashid, A. B.; Kausik, M. A. K. AI revolutionizing industries worldwide: a comprehensive overview of its diverse applications. Hybrid. Adv. 2024, 7, 100277.

54. Cheng, E. J.; Sharafi, A.; Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta. 2017, 223, 85-91.

55. Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, e2000751.

56. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 2015, 28, 266-73.

57. He, B.; Zhang, F.; Xin, Y.; et al. Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 2023, 7, 826-42.

58. Wang, Q.; Li, H.; Zhang, R.; et al. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy. Storage. Mater. 2022, 51, 630-7.

59. Yin, J.; Xu, X.; Jiang, S.; et al. High ionic conductivity PEO-based electrolyte with 3D framework for dendrite-free solid-state lithium metal batteries at ambient temperature. Chem. Eng. J. 2022, 431, 133352.

60. Li, R.; Hua, H.; Zeng, Y.; et al. Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. J. Energy. Chem. 2022, 64, 395-403.

61. Gong, S.; Zhang, Y.; Mu, Z.; et al. A predictive machine learning force-field framework for liquid electrolyte development. Nat. Mach. Intell. 2025, 7, 543-52.

62. Dave, A.; Mitchell, J.; Burke, S.; Lin, H.; Whitacre, J.; Viswanathan, V. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 2022, 13, 5454.

63. Flores, E.; Wölke, C.; Yan, P.; et al. Learning the laws of lithium-ion transport in electrolytes using symbolic regression. Digit. Discov. 2022, 1, 440-7.

64. He, X.; Zhu, Y.; Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017, 8, 15893.

65. Gautam, A.; Sadowski, M.; Ghidiu, M.; et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br. Adv. Energy. Mater. 2020, 11, 2003369.

66. Schwietert, T. K.; Vasileiadis, A.; Wagemaker, M. First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS. Au. 2021, 1, 1488-96.

67. López, C.; Rurali, R.; Cazorla, C. How concerted are ionic hops in inorganic solid-state electrolytes? J. Am. Chem. Soc. 2024, 146, 8269-79.

68. Sato, R.; Ando, Y.; Sau, K.; Shibuta, Y. Visualizing concerted ion migration of superionic conductors via directed graphs. Chem. Mater. 2025.

69. Xu, H.; Cao, G.; Shen, Y.; et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy. &. Environ. Mater. 2022, 5, 852-64.

70. Morgan, B. J. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites. Chem. Mater. 2021, 33, 2004-18.

71. Golov, A.; Carrasco, J. Molecular-level insight into the interfacial reactivity and ionic conductivity of a Li-argyrodite Li6PS5Cl solid electrolyte at bare and coated Li-metal anodes. ACS. Appl. Mater. Interfaces. 2021, 13, 43734-45.

72. Kato, Y.; Hori, S.; Saito, T.; et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 16030.

73. Hou, J.; Sun, W.; Yuan, Q.; et al. Multiscale engineered bionic solid-state electrolytes breaking the stiffness-damping trade-off. Angew. Chem. Int. Ed. Engl. 2025, 64, e202421427.

74. Baba, T.; Kajita, S.; Shiga, T.; Ohba, N. Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions. Sci. Rep. 2022, 12, 7291.

75. Fujimura, K.; Seko, A.; Koyama, Y.; et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms. Adv. Energy. Mater. 2013, 3, 980-5.

76. Wang, Z.; Lin, X.; Han, Y.; et al. Harnessing artificial intelligence to holistic design and identification for solid electrolytes. Nano. Energy. 2021, 89, 106337.

77. Lao, Z.; Tao, K.; Xiao, X.; et al. Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries. Nat. Commun. 2025, 16, 1075.

78. Hargreaves, C. J.; Gaultois, M. W.; Daniels, L. M.; et al. A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning. NPJ. Comput. Mater. 2023, 9, 9.

79. Lin, S.; Lin, Y.; He, B.; et al. Reclaiming neglected compounds as promising solid state electrolytes by predicting electrochemical stability window with dynamically determined decomposition pathway. Adv. Energy. Mater. 2022, 12, 2201808.

80. Chen, J.; Jiang, L.; Tan, S.; et al. Machine-learning-aided screening of inorganic lithium solid-state electrolytes with a wide electrochemical window. J. Mater. Chem. A. 2025, 13, 23445-53.

81. Zhang, Y.; He, X.; Chen, Z.; et al. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 2019, 10, 5260.

82. Lee, B. D.; Lee, J. W.; Park, J.; Cho, M. Y.; Park, W. B.; Sohn, K. S. Argyrodite configuration determination for DFT and AIMD calculations using an integrated optimization strategy. RSC. Adv. 2022, 12, 31156-66.

83. Bai, C.; Li, Y.; Xiao, G.; et al. Understanding the electrochemical window of solid-state electrolyte in full battery application. Chem. Rev. 2025, 125, 6541-608.

84. Wang, S.; Gong, S.; Böger, T.; et al. Multimodal machine learning for materials science: discovery of novel li-ion solid electrolytes. Chem. Mater. 2024, 36, 11541-50.

85. Kim, J.; Lee, D.; Lee, D.; Li, X.; Lee, Y. L.; Kim, S. Machine learning prediction models for solid electrolytes based on lattice dynamics properties. J. Phys. Chem. Lett. 2024, 15, 5914-22.

86. Cortés, H. A.; Bonilla, M. R.; Früchtl, H.; Van Mourik, T.; Carrasco, J.; Akhmatskaya, E. A data-mining approach to understanding the impact of multi-doping on the ionic transport mechanism of solid electrolytes materials: the case of dual-doped Ga0.15/ScyLi7La3Zr2O12. J. Mater. Chem. A. 2024, 12, 5181-93.

87. Shen, Z.; Bao, W.; Dang, Z.; et al. Predicting the ionic conductivity and obtaining mechanistic insights of plasticized solid polymer electrolytes using a data-driven approach. Macromolecules 2025, 58, 4194-205.

88. Zhang, Z.; Chu, J.; Zhang, H.; Liu, X.; He, M. Mining ionic conductivity descriptors of antiperovskite electrolytes for all-solid-state batteries via machine learning. J. Energy. Storage. 2024, 75, 109714.

89. Zhao, Q.; Zhang, L.; He, B.; et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality. Energy. Storage. Mater. 2021, 40, 386-93.

90. Chaudhary, A. K. Development of highly dense Ga-LLZO solid electrolyte pallet for all-solid-state battery using machine learning approach. Solid. State. Commun. 2025, 404, 116038.

91. Liu, M.; Clement, C.; Liu, K.; Wang, X.; Sparks, T. D. A data science approach for advanced solid polymer electrolyte design. Comput. Mater. Sci. 2021, 187, 110108.

92. Bradford, G.; Lopez, J.; Ruza, J.; et al. Chemistry-informed machine learning for polymer electrolyte discovery. ACS. Cent. Sci. 2023, 9, 206-16.

93. Lomeli, E. G.; Ransom, B.; Ramdas, A.; et al. Predicting reactivity and passivation of solid-state battery interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 51584-94.

94. Mortazavi, B. Recent advances in machine learning-assisted multiscale design of energy materials. Adv. Energy. Mater. 2024, 15, 2403876.

95. Ko, T. W.; Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 2023, 3, 998-1000.

96. You, Y.; Zhang, D.; Wu, F.; et al. Principal component analysis enables the design of deep learning potential precisely capturing LLZO phase transitions. NPJ. Comput. Mater. 2024, 10, 57.

97. Lee, J.; Ju, S.; Hwang, S.; et al. Disorder-dependent Li diffusion in Li6PS5Cl investigated by machine-learning potential. ACS. Appl. Mater. Interfaces. 2024, 16, 46442-53.

98. Guo, X.; Wang, Z.; Yang, J.; Gong, X. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries. J. Mater. Chem. A. 2024, 12, 10124-36.

99. Lian, J.; Fu, X.; Gong, X.; Xiao, R.; Li, H. High-throughput NEB for Li-ion conductor discoveryvia fine-tuned CHGNet potential. J. Mater. Chem. A. 2025, 13, 34918-26.

100. Dembitskiy, A. D.; Humonen, I. S.; Eremin, R. A.; Aksyonov, D. A.; Fedotov, S. S.; Budennyy, S. A. Benchmarking machine learning models for predicting lithium ion migration. NPJ. Comput. Mater. 2025, 11, 131.

101. Du, H.; Huang, X.; Hui, J.; Zhang, L.; Zhou, Y.; Wang, H. Assessment and application of universal machine learning interatomic potentials in solid-state electrolyte research. ACS. Materials. Lett. 2025, 7, 3403-12.

102. Deng, Y.; Li, Y.; Sai Gautam, G.; Zhu, B.; Deng, Z. Accelerating the discovery of disordered multi-component solid-state electrolytes using machine learning interatomic potentials. J. Mater. Chem. A. 2025, 13, 34507-18.

103. Batzner, S.; Musaelian, A.; Sun, L.; et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 2022, 13, 2453.

104. Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 2018, 120, 143001.

105. Yao, K.; Herr, J. E.; Toth, D. W.; Mckintyre, R.; Parkhill, J. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 2018, 9, 2261-9.

106. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL. Materials. 2013, 1, 011002.

107. Deng, B.; Zhong, P.; Jun, K.; et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 2023, 5, 1031-41.

108. Chen, C.; Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2022, 2, 718-28.

109. Hwang, W.; Victor Oh, S. H.; Shin, J.; Soon, A.; Yoo, S. H.; Jang, W. Data-driven materials informatics for novel piezoelectric Janus-type nanomaterials discovery. J. Phys. Chem. Lett. 2024, 15, 6451-7.

110. Batatia, I.; Benner, P.; Chiang, Y.; et al. A foundation model for atomistic materials chemistry. J. Chem. Phys. 2025, 163, 184110.

111. Alghamdi, N.; de Angelis, P.; Asinari, P.; et al. Comparing fine-tuning strategies of MACE machine learning force field for modeling Li-ion diffusion in LiF for batteries. arXiv 2025, arXiv:2510.05020. Available online: https://doi.org/10.48550/arXiv.2510.05020. (accessed 29 December 2025).

112. Böhm, J.; Champagne, A. Predicting crystal structures and ionic conductivity in Li3YCl6-xBrx halide solid electrolytes using a fine-tuned machine learning interatomic potential. arXiv 2025, arXiv:251009861. Available online: https://doi.org/10.48550/arXiv.251009861. (accessed 29 December 2025).

113. Kim, J.; Lee, J.; Oh, S.; et al. An efficient forgetting-aware fine-tuning framework for pretrained universal machine-learning interatomic potentials. arXiv 2025, arXiv:250615223. Available online: https://doi.org/10.48550/arXiv.250615223. (accessed 29 December 2025).

114. Deng, B.; Choi, Y. Zhong. P.; et al. Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning. arXiv 2025, arXiv:240507105. Available online: https://doi.org/10.48550/arXiv.240507105. (accessed 29 December 2025).

115. Liu, X.; Zeng, K.; Luo, Z.; et al. Fine-tuning universal machine-learned interatomic potentials: a tutorial on methods and applications. arXiv 2025, arXiv:250621935. Available online: https://doi.org/10.48550/arXiv.2506.21935. (accessed 29 December 2025).

116. Chen, Z.; Du, T.; Krishnan, N. M. A.; Yue, Y.; Smedskjaer, M. M. Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes. Nat. Commun. 2025, 16, 1057.

117. Wang, Q.; Yang, F.; Wang, Y.; et al. Unraveling the complexity of divalent hydride electrolytes in solid-state batteries via a data-driven framework with large language model. Angew. Chem. Int. Ed. Engl. 2025, 64, e202506573.

118. Leng, Y.; Zhong, Y.; Gu, Z.; et al. Intelligent, personalized scientific assistant via large language models for solid-state battery research. ACS. Mater. Lett. 2025, 7, 1807-16.

119. Chen, X.; Liu, M.; Yin, S.; Gao, Y. C.; Yao, N.; Zhang, Q. Uni-electrolyte: an artificial intelligence platform for designing electrolyte molecules for rechargeable batteries. Angew. Chem. Int. Ed. Engl. 2025, 64, e202503105.

120. Zhang, D.; Jia, X.; Hung, T. B.; et al. “DIVE” into hydrogen storage materials discovery with AI agents. arXiv 2025, arXiv:250813251. Available online: https://doi.org/10.48550/arXiv.2508.13251. (accessed 29 December 2025).

121. Gomes, C. P.; Bai, J.; Xue, Y.; et al. CRYSTAL: a multi-agent AI system for automated mapping of materials’ crystal structures. MRS. Communications. 2019, 9, 600-8.

122. M Bran, A.; Cox, S.; Schilter, O.; Baldassari, C.; White, A. D.; Schwaller, P. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 2024, 6, 525-35.

123. Darvish, K.; Skreta, M.; Zhao, Y.; et al. ORGANA: A robotic assistant for automated chemistry experimentation and characterization. Matter 2025, 8, 101897.

124. Szymanski, N. J.; Rendy, B.; Fei, Y.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86-91.

125. Mahbub, R.; Huang, K.; Jensen, Z.; Hood, Z. D.; Rupp, J. L.; Olivetti, E. A. Text mining for processing conditions of solid-state battery electrolytes. Electrochem. Commun. 2020, 121, 106860.

126. Shon, Y. J.; Min, K. Extracting chemical information from scientific literature using text mining: building an ionic conductivity database for solid-state electrolytes. ACS. Omega. 2023, 8, 18122-7.

127. Heo, G.; Soon, A.; Lee, T. Data-mining fluoride-based solid-state electrolytes for monovalent metal batteries. J. Mater. Chem. A. 2024, 12, 27409-20.

128. Jang, S. H.; Tateyama, Y.; Jalem, R. High-throughput data-driven prediction of stable high-performance Na-ion sulfide solid electrolytes. Adv. Funct. Mater. 2022, 32, 2206036.

129. Lee, B. D.; Gavali, D. S.; Kim, H.; et al. Discovering virtual Na-based argyrodites as solid-state electrolytes using DFT, AIMD, and machine learning techniques. J. Mater. Chem. A. 2025, 13, 10462-74.

130. Chen, Y.; Liu, Y.; He, Z.; et al. Artificial intelligence for the understanding of electrolyte chemistry and electrode interface in lithium battery. NSO. 2023, 20230039.

131. Jiang, X.; Wang, W.; Tian, S.; Wang, H.; Lookman, T.; Su, Y. Applications of natural language processing and large language models in materials discovery. npj. Comput. Mater. 2025, 11, 79.

132. Zhang, J.; Chen, X.; Ye, X.; Yang, Y.; Ai, B. Large language model in materials science: roles, challenges, and strategic outlook. adv. intell. discov. 2025, 202500085.

133. Maffettone, P. M.; Banko, L.; Cui, P.; et al. Crystallography companion agent for high-throughput materials discovery. Nat. Comput. Sci. 2021, 1, 290-7.

134. Wong, L. L.; Phuah, K. C.; Dai, R.; Chen, H.; Chew, W. S.; Adams, S. Bond valence pathway analyzer - an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 2021, 33, 625-41.

135. Chen, H.; Wong, L. L.; Adams, S. SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2019, 75, 18-33.

136. Park, D.; Park, H.; Lee, Y.; et al. Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 34806-14.

137. Li, Z.; Dong, H.; Zhang, B. Motif-based exploration of halide classes of Li5M10.5M20.5X8 conductors using the DFT method: toward high Li-Ion conductivity and improved stability. ACS. Appl. Mater. Interfaces. 2023, 15, 42481-9.

138. Choi, E.; Jo, J.; Kim, W.; Min, K. Searching for mechanically superior solid-state electrolytes in Li-ion batteries via data-driven approaches. ACS. Appl. Mater. Interfaces. 2021, 13, 42590-7.

139. Yang, F.; Sato, R.; Cheng, E. J.; et al. Data-driven viewpoint for developing next-generation Mg-ion solid-state electrolytes. J. Electrochem. 2024, 30, 2415001.

140. Yang, F.; Campos Dos Santos, E.; Jia, X.; et al. A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries. Nano. Mater. Sci. 2024, 6, 256-62.

141. Levin, I. NIST Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology. 2018.

142. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.

143. Chen, C.; Nguyen, D. T.; Lee, S. J.; et al. Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation. J. Am. Chem. Soc. 2024, 146, 20009-18.

144. Sendek, A. D.; Cheon, G.; Pasta, M.; Reed, E. J. Quantifying the search for solid Li-ion electrolyte materials by anion: a data-driven perspective. J. Phys. Chem. C. 2020, 124, 8067-79.

145. Zhang, J.; Li, J.; Zhao, G.; Wang, Q.; Guo, Y. G.; Yang, C. Mining solid-state electrolytes from metal-organic framework databases through large language models and representation clustering. J. Am. Chem. Soc. 2025, 147, 40496-506.

146. Nguyen, T. M.; Tawfik, S. A.; Tran, T.; Gupta, S.; Rana, S.; Venkatesh, S. The search for superionic solid-state electrolytes using a physics-informed generative model. Mater. Horiz. 2025, 12, 6945-55.

147. Leong, S. X.; Griesbach, C. E.; Zhang, R.; et al. Steering towards safe self-driving laboratories. Nat. Rev. Chem. 2025, 9, 707-22.

148. Nair, M. R.; Roy, T. Role of artificial intelligence in the design and discovery of next-generation battery electrolytes. Chem. Phys. Rev. 2025, 6, 011311.

149. Noh, J.; Doan, H. A.; Job, H.; et al. An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations. Nat. Commun. 2024, 15, 2757.

150. Wang, C.; Kim, Y. J.; Vriza, A.; et al. Autonomous platform for solution processing of electronic polymers. Nat. Commun. 2025, 16, 1498.

151. Lookman, T.; Balachandran, P. V.; Xue, D.; Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ. Comput. Mater. 2019, 5, 21.

152. Ueno, T.; Rhone, T. D.; Hou, Z.; Mizoguchi, T.; Tsuda, K. COMBO: An efficient Bayesian optimization library for materials science. Mater. Discov. 2016, 4, 18-21.

153. Takeda, H.; Murakami, K.; Yamaguchi, Y.; et al. Experimental data-driven efficient exploration of the composition and process conditions of Li-rich NASICON-type solid electrolytes. Next. Mater. 2025, 8, 100574.

154. Fukuda, H.; Kusakawa, S.; Nakano, K.; et al. Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries. RSC. Adv. 2022, 12, 30696-703.

155. Takeda, H.; Fukuda, H.; Nakano, K.; et al. Process optimisation for NASICON-type solid electrolyte synthesis using a combination of experiments and Bayesian optimisation. Mater. Adv. 2022, 3, 8141-8.

156. Matsuda, S.; Lambard, G.; Sodeyama, K. Data-driven automated robotic experiments accelerate discovery of multi-component electrolyte for rechargeable Li-O2 batteries. Cell. Rep. Phys. Sci. 2022, 3, 100832.

157. Whitacre, J. F.; Mitchell, J.; Dave, A.; Wu, W.; Burke, S.; Viswanathan, V. An autonomous electrochemical test stand for machine learning informed electrolyte optimization. J. Electrochem. Soc. 2019, 166, A4181-7.

158. Dave, A.; Mitchell, J.; Kandasamy, K.; et al. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell. Rep. Phys. Sci. 2020, 1, 100264.

159. Stolberg, M. A.; Lopez, J.; Cawthern, S. D.; et al. A data-driven platform for automated characterization of polymer electrolytes. Matter 2025, 8, 102129.

160. Boiko, D. A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous chemical research with large language models. Nature 2023, 624, 570-8.

161. Kamikawa, Y.; Amezawa, K.; Terada, K. Chemo-electro-mechanical phase-field simulation of interfacial nanodefects and nanovoids in solid-state batteries. Commun. Mater. 2024, 5, 180.

162. You, Y.; Zhang, D.; Wu, Z.; et al. Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries. Nat. Commun. 2025, 16, 4630.

163. Huo, H.; Bai, Y.; Benz, S. L.; et al. Decoupling the effects of interface chemical degradation and mechanical cracking in solid-state batteries with silicon electrode. Adv. Mater. 2025, 37, e2415006.

164. Rajagopal, D.; Koeppe, A.; Esmaeilpour, M.; et al. Data-driven virtual material analysis and synthesis for solid electrolyte interphases. Adv. Energy. Mater. 2023, 13, 2301985.

165. De Baas, A.; Nostro, P. D.; Friis, J.; et al. Review and alignment of domain-level ontologies for materials science. IEEE. Access. 2023, 11, 120372-401.

166. Dreger, M.; Eslamibidgoli, M. J.; Eikerling, M. H.; Malek, K. Synergizing ontologies and graph databases for highly flexible materials-to-device workflow representations. J. Mater. Inf. 2023, 3, 2.

167. Stier, S. P.; Xu, X.; Gold, L.; Möckel, M. Ontology-based battery production dataspace and its interweaving with artificial intelligence-empowered data analytics. Energy. Tech. 2024, 12, 2301305.

168. Mutz, M.; Perovic, M.; Gümbel, P.; et al. Toward a Li‐ion battery ontology covering production and material structure. Energy. Tech. 2022, 11, 2200681.

169. Clark, S.; Battaglia, C.; Castelli, I. E.; et al. Semantic resources for managing knowledge in battery research. ChemSusChem 2025, 18, e202500458.

170. Clark, S.; Bleken, F. L.; Stier, S.; et al. Toward a unified description of battery data. Adv. Energy. Mater. 2021, 12, 2102702.

171. Ward, L.; Babinec, S.; Dufek, E. J.; et al. Principles of the battery data genome. Joule 2022, 6, 2253-71.

172. Ghedini, E.; Goldbeck, G.; Friis, J.; et al. European Materials & Modelling Ontology. https://github.com/emmo-repo/EMMO.

173. Del Nostro, P.; Goldbeck, G.; Toti, D. CHAMEO: An ontology for the harmonisation of materials characterisation methodologies. AO. 2022, 17, 401-21.

174. Del Nostro, P.; Goldbeck, G.; Kienberger, F.; et al. Battery testing ontology: An EMMO-based semantic framework for representing knowledge in battery testing and battery quality control. Computers. in. Industry. 2025, 164, 104203.

175. Venugopal, V.; Olivetti, E. MatKG: An autonomously generated knowledge graph in Material Science. Sci. Data. 2024, 11, 217.

176. Bai, J.; Mosbach, S.; Taylor, C. J.; et al. A dynamic knowledge graph approach to distributed self-driving laboratories. Nat. Commun. 2024, 15, 462.

177. Rihm, S. D.; Tan, Y. R.; Ang, W.; et al. The Digital Lab Facility Manager: Automating operations of research laboratories through “The World Avatar”. Nexus 2024, 1, 100031.

178. Bai, J.; Cao, L.; Mosbach, S.; Akroyd, J.; Lapkin, A. A.; Kraft, M. From platform to knowledge graph: evolution of laboratory automation. JACS. Au. 2022, 2, 292-309.

179. Wang, S.; Liu, J.; Song, X.; et al. Artificial intelligence empowers solid-state batteries for material screening and performance evaluation. Nanomicro. Lett. 2025, 17, 287.

180. Wang, K.; Gupta, V.; Lee, C. S.; et al. XElemNet: towards explainable AI for deep neural networks in materials science. Sci. Rep. 2024, 14, 25178.

181. Tao, K.; Li, J.; He, W.; et al. CGformer: Transformer-enhanced crystal graph network with global attention for material property prediction. Matter 2025, 8, 102380.

182. Wang, Y.; Shi, J.; Gao, H.; Wang, M. S.; Lin, C. Study of void evolution in lithium solid-state batteries: integrating high-throughput phase-field modeling, experimental validation, and machine learning. Adv. Energy. Mater. 2025, 15, 2501616.

183. Liu, B.; Yang, J.; Yang, H.; et al. Rationalizing the interphase stability of Li|doped-Li7La3Zr2O12 via automated reaction screening and machine learning. J. Mater. Chem. A. 2019, 7, 19961-9.

184. Hwang, H.; Jeong, H.; Cho, J. W.; et al. Machine learning-assisted microstructural quantification of multiphase cathode composites in all-solid-state batteries: correlation with battery performance. Small 2025, 21, e2410016.

185. Ding, K.; Yu, J.; Huang, J.; Yang, Y.; Zhang, Q.; Chen, H. SciToolAgent: a knowledge-graph-driven scientific agent for multitool integration. Nat. Comput. Sci. 2025, 5, 962-72.

186. Chen, Z.; Zhang, J.; Zhao, G.; Wang, Q.; Yang, C.; Guo, Y. Chained LLM-human interactive framework for electrolyte design in four-electron Zn-I2 batteries. Sci. China. Chem. 2025, 2789.