REFERENCES
1. Zheng, Q.; Xia, X.; Zou, X.; et al. CodeGeeX: a pre-trained model for code generation with multilingual benchmarking on HumanEval-X. In KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, USA, August 6-10, 2023; Association for Computing Machinery: New York, USA, 2023; pp 5673-84.
2. Wang, W.; Ma, Z.; Wang, Z.; et al. A survey of LLM-based agents in medicine: how far are we from baymax? In 63rd Annual Meeting of the Association for Computational Linguistics, Findings of the Association for Computational Linguistics: ACL 2025, Vienna, Austria, July 27-30, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 10345-59.
3. Wan, H.; Feng, S.; Tan, Z.; Wang, H.; Tsvetkov, Y.; Luo, M. DELL: Generating reactions and explanations for LLM-based misinformation detection. In 62nd Annual Meeting of the Association for Computational Linguistics, Findings of the Association for Computational Linguistics: ACL 2024, Bangkok, Thailand and virtual meeting, July 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 2637-67.
4. Yuan, W.; Cao, J.; Jiang, Z.; et al. Can large language models grasp legal theories? Enhance legal reasoning with insights from multi-agent collaboration. In The 2024 Conference on Empirical Methods in Natural Language Processing, Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, USA, November 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 7577-97.
5. Zhou, Y.; Huang, H.; Wu, Z. Boosting legal case retrieval by query content selection with large language models. In the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, Beijing, China, November 26-28, 2023; Association for Computing Machinery: New York, USA, 2023 pp 176-84.
6. Mishra, K.; Priya, P.; Ekbal, A. Help me heal: a reinforced polite and empathetic mental health and legal counseling dialogue system for crime victims. AAAI. 2023, 37, 14408-16.
7. Zhang, Y.; Tian, Z.; Zhou, S.; et al. RLJP: legal judgment prediction via first-order logic rule-enhanced with large language models. arXiv 2025. arXiv:2505.21281. Available online: https://doi.org/10.48550/arXiv.2505.21281 (accessed 11 November 2025).
8. Chen, G.; Fan, L.; Gong, Z.; et al. AgentCourt: simulating court with adversarial evolvable lawyer agents. In 63rd Annual Meeting of the Association for Computational Linguistics, Findings of the Association for Computational Linguistics: ACL 2025, Vienna, Austria, July 27-30, 2025. Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 5850-65.
9. He, Z.; Cao, P.; Wang, C.; et al. AgentsCourt: building judicial decision-making agents with court debate simulation and legal knowledge augmentation. In The 2024 Conference on Empirical Methods in Natural Language Processing, Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, USA, November 11-16 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 9399-416.
10. Feng, Y.; Li, C.; Ng, V. Legal judgment prediction: a survey of the state of the art. In ThirtyFirst International Joint Conference on Artificial Intelligence (IJCAI-22), Proceedings of the Thirty-first International Joint Conference on Artificial Intelligence, Vienna, Austria, July 23-29, 2022; International Joint Conferences on Artificial Intelligence Organization: Marina del Rey, USA, 2022; pp 5461-9.
11. Yang, X.; Wang, Z.; Wang, Q.; Wei, K.; Zhang, K.; Shi, J. Large language models for automated Q&A involving legal documents: a survey on algorithms, frameworks and applications. IJWIS. 2024, 20, 413-435.
12. Siino, M.; Falco, M.; Croce, D.; Rosso, P. Exploring LLMs applications in law: a literature review on current legal NLP approaches. IEEE. Access. 2025, 13, 18253-76.
13. Mamalis, M. E.; Kalampokis, E.; Fitsilis, F. A large language model agent based legal assistant for governance applications. In 23rd Annual International Conference on Digital Government Research, Proceedings of the 23rd Annual International Conference on Digital Government Research, Seoul, Korea, June 15-17, 2022; Association for Computing Machinery: New York, USA, 2022; pp 286-301.
14. Drumond, L.; Girardi, R. A multi-agent legal recommender system. Artif. Intell. Law. 2008, 16, 175-207.
15. Liu, B.; Hu, Y.; Wu, Y.; et al. Investigating conversational agent action in legal case retrieval. In 45th European Conference on Information Retrieval, Proceedings of the 45th European Conference on Information Retrieval, Part I, Dublin, Ireland, April 2-6, 2023; Springer: Cham, Switzerland, 2023; pp 622-35.
16. Liu, B.; Wu, Y.; Zhang, F.; et al. Query generation and buffer mechanism: towards a better conversational agent for legal case retrieval. Inform. Process. Manag. 2022, 59, 103051.
17. Xie, N.; Bai, Y.; Gao, H.; et al. DeliLaw: A Chinese legal counselling system based on a large language model. In CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management, Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, Boise, USA; October 21-25 2024; Association for Computing Machinery: New York, USA, 2024; pp 5299-303.
18. Yuan, M.; Kao, B.; Wu, T. H.; et al. Bringing legal knowledge to the public by constructing a legal question bank using large-scale pre-trained language model. Artif. Intell. Law. 2023, 32, 769-805.
19. Amato, F.; Fonisto, M.; Giacalone, M.; Sansone, C. An intelligent conversational agent for the legal domain. Information. 2023, 14, 307.
20. Yao, R.; Wu, Y.; Zhang, T.; et al. Intelligent legal assistant: an interactive clarification system for legal question answering. In WWW '25: The ACM Web Conference 2025, Companion Proceedings of the ACM on Web Conference 2025, Sydney, Australia, April 28-May 2, 2025; Association for Computing Machinery: New York, USA, 2025; pp 2935-8.
21. John, A. K.; Di Caro, L. Robaldo, L., Boella, G. Legalbot: a deep learning-based conversational agent in the legal domain. In 22nd International Conference on Applications of Natural Language to Information Systems Lecture Notes in Computer Science (LNCS), Liège, Belgium, June 21-23, 2017; Springer: Cham, Switzerland, 2017; Vol. 10260, pp 171-5.
22. Jiang, C.; Yang, X. Legal syllogism prompting: teaching large language models for legal judgment prediction. In Nineteenth International Conference on Artificial Intelligence and Law (ICAIL 2023), Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law; Braga, Portugal, June 19-23, 2023; Association for Computing Machinery: New York, USA, 2023; pp 417-21.
23. Zhang, D.; Petrova, A.; Trautmann, D.; Schilder, F. Unleashing the power of large language models for legal applications. In CIKM '23: The 32nd ACM International Conference on Information and Knowledge Management, Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, United Kingdom, October 21-25, 2023; Association for Computing Machinery: New York, USA, 2023; pp 5257-8.
24. Shukla, A.; Bhattacharya, P.; Poddar, S.; et al. Legal case document summarization: extractive and abstractive methods and their evaluation. In 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, November 20-23, 2022; Association for Computational Linguistics: Stroudsburg, USA, 2022; pp 1048-64.
25. Lin, C. H.; Cheng, P. J. Assisting drafting of Chinese legal documents using fine-tuned pre-trained large language models. Rev. Socionetwork. Strat. 2025, 19, 83-110.
26. Aggarwal, V.; Garimella, A.; Srinivasan, B. V.; N, A.; Jain, R. ClauseRec: a clause recommendation framework for AI-aided contract authoring. In 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic, November 7 -11, 2021; Association for Computational Linguistics: Stroudsburg, USA, 2021; pp 8770-6.
27. Hassani, S.; Sabetzadeh, M.; Amyot, D.; Liao, J. Rethinking legal compliance automation: opportunities with large language models. In 2024 IEEE 32nd International Requirements Engineering Conference (RE), Proceedings of the 2024 IEEE 32nd International Requirements Engineering Conference (RE), Reykjavik, Iceland, June 24-28, 2024; IEEE: Piscataway, NJ, USA; 2024; pp 432-40.
28. Nguyen, T. D.; Pham, L. H.; Sun, J. AUTOLAW: enhancing legal compliance in large language models via case law generation and jury-inspired deliberation. arXiv 2025, arXiv:2505.14015. Available online: https://doi.org/10.48550/arXiv.2505.21281 (accessed 11 November 2025).
29. Feretzakis, G.; Vagena, E.; Kalodanis, K.; Peristera, P.; Kalles, D.; Anastasiou, A. GDPR and large language models: technical and legal obstacles. Future. Internet. 2025, 17, 151.
30. Jang, M.; Stikkel, G. Leveraging natural language processing and large language models for assisting due diligence in the legal domain. In 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Mexico City, Mexico, June 16-23, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 155-64.
31. Sperotto, F. A.; de Aguiar, M. S. AgentDevLaw: A middleware architecture for integrating legal ontologies and multi-agent systems. In: Cerri R, Prati RC, Eds. BRACIS 2020, Proceedings of the Brazilian Conference on Intelligent Systems, Online, October 19-22, 2020; Springer Nature: Cham, Switzerland; 2020; pp 33-46.
32. Sperotto, F. A.; Belchior, M.; de Aguiar, M. S. Ontology-based legal system in multi-agents systems. In Mexican International Conference on Artificial Intelligence 2019, Proceedings of the 18th Mexican International Conference on Artificial Intelligence, Xalapa, Mexico, October 27-November 2, 2019; Springer Nature: Cham, Switzerland; 2019; pp 507-21.
33. Bui, M. Q.; Do, D. T.; Le, N. K.; et al. Data augmentation and large language model for legal case retrieval and entailment. Rev. Socionetwork. Strat. 2024, 18, 49-74.
34. Kalra, R.; Wu, Z.; Gulley, A.; et al. HyPA-RAG: A hybrid parameter adaptive retrieval-augmented generation system for AI legal and policy applications. In 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual, Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (customnlp4u), Miami, USA, November 16, 2024. Association for Computational Linguistics; Stroudsburg, USA, 2024; pp. 237-56.
35. Li, A.; Wu, Y.; Liu, Y. et al UniLR: Unleashing the power of LLMs on multiple legal tasks with a unified legal retriever. In 63rd Annual Meeting of the Association for Computational Linguistic, Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, Austria. July 27-August 1, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 11953-67.
36. Drumond, L.; Girardi, R.; Leite, A. Architectural design of a multi-agent recommender system for the legal domain. In ICAIL07: 11th International Conference on Artificial Intelligence and Law, Proceedings of the 11th International Conference on Artificial Intelligence and Law, Stanford California, June 4-8 2007; Association for Computing Machinery: New York, USA, 2007; pp 183-7.
37. Watson, W.; Cho, N. Srishankar, N., et al. LAW: legal agentic workflows for custody and fund services contracts. arXiv 2024, arXiv:2412.11063. Available online: https://arxiv.org/abs/2412.11063 (accessed 11 November 2025).
38. Raptopoulos, P.; Filandrianos, G.; Lymperaiou, M. PAKTON: a multi-agent framework for question answering in long legal agreements. arXiv 2025, arXiv:2506.00608. Available online: https://arxiv.org/abs/2506.00608 (accessed 11 November 2025).
39. Wiratunga, N.; Abeyratne, R.; Jayawardena, L.; et al. CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering. In 32nd International Conference on CaseBased Reasoning Research and Development (ICCBR 2024), Proceedings of the 32nd International Conference on CaseBased Reasoning Research and Development (ICCBR 2024), Mérida, Mexico, July 1-4 2024; Springer Nature: Cham, Switzerland; 2023; pp 445-60.
40. Nguyen, H. T.; Satoh, K. ConsRAG: minimize LLM hallucinations in the legal domain. In Frontiers in Artificial Intelligence and Applications; Savelka, J., Harasta, J., Novotna, T., et al., Eds.; IOS Press: Amsterdam, The Netherlands, 2024. pp 327-32.
41. Li, B.; Fan, S.; Huang, J. CSAFT: continuous semantic augmentation fine-tuning for legal large language models. In 33rd Artificial Neural Networks and Machine Learning - ICANN 2024, Lecture Notes in Computer Science, LuganoViganello, Switzerland, September 17-20, 2024; Springer Nature: Cham, Switzerland, 2024; Vol. 15020, pp 293-307.
42. Louis, A.; Van Dijck, G.; Spanakis, G. Interpretable long-form legal question answering with retrieval-augmented large language models. AAAI. 2024, 38, 22266-75.
43. Do Espírito Santo F. O.; Marques Peres S.; De Sousa Gramacho G.; Brandão, A. A. F.; Cozman, F. G. Legal document-based, domain-driven Q&A system: LLMs in perspective. In 2024 International Joint Conference on Neural Networks (IJCNN), International Joint Conference on Neural Networks, IJCNN 2024: Proceedings, Yokohama, Japan, June 30-July 4, 2024. IEEE; 2024. pp 1-9.
44. Wan, Z.; Zhang, Y.; Wang, Y.; Cheng, F.; Kurohashi, S. Reformulating domain adaptation of large language models as adapt-retrieve-revise: a case study on Chinese legal domain. In 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2024), Findings of the Association for Computational Linguistics: ACL 2024, Bangkok, Thailand and virtual meeting, July 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 5030-41.
45. El Hamdani, R.; Bonald, T.; Malliaros, F. D.; Holzenberger, N.; Suchanek, F. The factuality of large language models in the legal domain. In CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management, Short paper at 33rd ACM International Conference on Information and Knowledge Management (CIKM 2024), Boise, USA, October 21-25, 2024; Association for Computing Machinery: New York, USA, 2024; pp 3741-6.
46. Al-qaesm, R.; Hendi, M.; Tantour, B. Alkafi-llama3: fine-tuning LLMs for precise legal understanding in Palestine. Discov. Artif. Intell. 2025, 5, 107.
47. Zhu, S.; Pan, L.; Li, B.; Xiong, D. LANDeRMT: dectecting and routing language-aware neurons for selectively finetuning LLMs to machine translation. In 62nd Annual Meeting of the Association for Computational Linguistics, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, August 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 12135-48.
48. Li, B.; Fan, S.; Zhu, S.; Wen, L. CoLE: A collaborative legal expert prompting framework for large language models in law. Knowl. Based. Syst. 2025, 311, 113052.
49. Yao, R.; Wu, Y.; Wang, C.; Xiong, J.; Wang, F.; Liu, X. Elevating legal LLM responses: harnessing trainable logical structures and semantic knowledge with legal reasoning. In 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Albuquerque, New Mexico, April 29-May 4, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 5630-42.
50. Doyle, C.; Tucker, A. D. If you give an LLM a legal practice guide. In CSLAW '25: Symposium on Computer Science and Law, Proceedings of the 2025 Symposium on Computer Science and Law, Munich, Germany, March 25-27, 2025; Association for Computing Machinery: New York, USA, 2025: pp 194-205.
51. Fei, Z. Zhang S.; Shen X.; et al. InternLM-law: an open-sourced Chinese legal large language model. In 31st International Conference on Computational Linguistics, Proceedings of the 31st International Conference on Computational Linguistics, Dublin, Ireland, January 19-24, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 9376-92. https://aclanthology.org/2025.coling-main.629/ (accessed 2025-11-12).
52. Rivas-Echeverría, F.; Ramos, L. T.; Ibarra, J. L.; Zerpa-Bonillo, S.; Arciniegas, S.; Asprino-Salas, M. LegalBot-EC: an LLM-based chatbot for legal assistance in Ecuadorian law. arXiv 2025, arXiv:2506.12346. Available online: https://arxiv.org/abs/2506.12346 (accessed 11 November 2025).
53. Blair-Stanek, A.; Van Durme, B. LLMs provide unstable answers to legal questions. arXiv 2025, arXiv:2502.05196. Available online: https://arxiv.org/abs/2502.05196 (accessed 11 November 2025).
54. Hannah, G.; Sousa, R. T.; Dasoulas, I.; D’amato, C. On the legal implications of large language model answers: a prompt engineering approach and a view beyond by exploiting Knowledge Graphs. J. Web. Semant. 2025, 84, 100843.
55. Akbar, K. A.; Uddin, M. N.; Khan, L.; et al. Retrieval augmented generation-based large language models for bridging transportation cybersecurity legal knowledge gaps. arXiv 2025, arXiv:2502.18426. Available online: https://doi.org/10.48550/arXiv.2505.18426. (accessed 11 November 2025).
56. Pham, H. Q.; Nguyen, Q. V.; Tran, D. Q.; Nguyen, T. B.; Nguyen, K. V. Top2at ALQAC2024: large language models (LLMs) for legal question answering. Int. J. As. Lang. Proc. 2025, 35, 2450010.
57. Kaczmarczyk, A.; Libal, T.; Smywiński-Pohl, A. A legal assistant for accountable decision-making. In Savelka, J.; Harasta, J.; Novotna, T.; Misek, J. Eds.; Volume 395: Legal Knowledge and Information Systems. IOS Press: Amsterdam, The Netherlands, 2024. pp 378-80.
58. Büttner, M.; Habernal, I. Answering legal questions from laymen in German civil law system. In 18th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), St. Julian’s, Malta, March 17-22, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 2015-27.
59. Fratrič, P.; Holzenberger, N.; Amariles, D. R. Can AI expose tax loopholes? Towards a new generation of legal policy assistants. arXiv 2025, arxiv.2503.17339. Available online: https://arxiv.org/abs/2503.17339 (accessed 11 November 2025).
60. Rebolledo-mendez, J. D.; Tonatiuh Gomez Briones, F. A.; Gonzalez Cardona, L. G. Legal artificial assistance agent to assist refugees. In 2022 IEEE International Conference on Big Data (Big Data), Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, December 17-20 2022. IEEE; 2022; pp 5126-8.
61. Cui, J.; Ning, M.; Li, Z.; et al. ChatLaw: a multi-agent collaborative legal assistant with knowledge graph enhanced mixture-of-experts large language model. arXiv 2024, arXiv:2306.16092. Available online: https://arxiv.org/abs/2306.16092 (accessed 11 November 2025).
62. Sun, J.; Dai, C.; Luo, Z.; Chang, Y.; Li, Y. LawLuo: a multi-agent collaborative framework for multi-round Chinese legal consultation. arXiv 2024, arXiv:2407.16252. Available online: https://arxiv.org/abs/2407.16252 (accessed 11 November 2025).
63. Shi, J.; Guo, Q.; Liao, Y.; Liang, S. LegalGPT: legal chain of thought for the legal large language model multi-agent framework. In International Conference on Intelligent Computing 2024, Lecture Notes in Computer Science, Singapore, August 1-4, 2024; Springer Nature: Singapore; 2024; Vol. 14880, pp 25-37.
64. Zhang, L.; Ashley, K. D. Mitigating manipulation and enhancing persuasion: a reflective multi-agent approach for legal argument generation. arXiv 2025, arXiv:2506.02992. Available online: https://arxiv.org/abs/2407.16252 (accessed 11 November 2025).
65. Yue, S.; Huang, T.; Jia, Z.; et al. Multi-agent simulator drives language models for legal intensive interaction. In 2025 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL 2025), Findings of the Association for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, April 29-May 4, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 6537-70.
66. Shui, R.; Cao, Y.; Wang, X.; Chua, T. S. A comprehensive evaluation of large language models on legal judgment prediction. In EMNLP 2023, Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023; Association for Computational Linguistics: Stroudsburg, USA, 2023; pp 7337-48.
67. Wu, Y.; Zhou, S.; Liu, Y.; et al. Precedent-enhanced legal judgment prediction with LLM and domain-model collaboration. In 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, December 6-10, 2023; Association for Computational Linguistics: Stroudsburg, USA, 2023; pp 12060-75.
68. Prasad, N.; Boughanem, M.; Dkaki, T. Exploring large language models and hierarchical frameworks for classification of large unstructured legal documents. In European Conference on Information Retrieval (ECIR) 2024, Proceedings of European Conference on Information Retrieval (ECIR) 2024 in part II of the Lecture Notes in Computer Science series, Glasgow, UK, March 24-28, Springer Nature: Cham, Switzerland, 2024; pp 424-32.
69. Xia, Y.; Luo, X. Legal judgment prediction with LLM and graph contrastive learning networks. In Proceedings of the 2024 8th International Conference on Computer Science and Artificial Intelligence (CSAI), CSAI 2024: 2024 8th International Conference on Computer Science and Artificial Intelligence (CSAI), Beijing, China, December 6-8 2024; Association for Computing Machinery: New York, USA, 2024; pp 424-32.
70. Wang, X.; Zhang, X.; Hoo, V.; Shao, Z.; Zhang, X. LegalReasoner: a multi-stage framework for legal judgment prediction via large language models and knowledge integration. IEEE. Access. 2024, 12, 166843-54.
71. Nigam, S. K.; Patnaik, B. D.; Mishra, S.; Shallum, N.; Ghosh, K.; Bhattacharya, A. NyayaAnumana & INLegalLlama: the largest Indian legal judgment prediction dataset and specialized language model for enhanced decision analysis. In 31st International Conference on Computational Linguistics, Proceedings of the 31st International Conference on Computational Linguistics, Abu Dhabi, United Arab Emirates, January 19-24, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 11135-60. https://aclanthology.org/2025.coling-main.738/ (accessed 2025-11-12).
72. Goto, T.; Sano, K.; Tojo, S. Modeling predictability of agent in legal cases. In 2016 International Conference on Agents, Proceedings of the 2016 International Conference on Agents, Matsue, Japan, September 28-30, 2016; IEEE: Now York, USA; pp 13-14.
73. Ghosh, S.; Verma, D.; Ganesan, B.; Bindal, P.; Kumar, V.; Bhatnagar, V. InLegalLLaMA: Indian legal knowledge enhanced large language model. In 1st International OpenKG Workshop: Large Knowledge-Enhanced Models, Proceedings of the 1st International OpenKG Workshop: Large Knowledge-Enhanced Models, Jeju Island, South Korea, August 3, 2024; CEUR Workshop Proceedings: Online, 2024; pp 37-46. https://api.semanticscholar.org/CorpusID:274280428 (accessed 2025-11-12).
74. Su, W.; Yue, B.; Ai, Q.; et al. JuDGE: benchmarking judgment document generation for Chinese legal system. In 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘25), Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘25), July 13-18 2025; Padua, Italy; Association for Computing Machinery: New York, USA; 2025. pp 3573-83.
75. Jung, S.; Jung, J. Courtroom-LLM: a legal-inspired multi-LLM framework for resolving ambiguous text classifications. In 31st International Conference on Computational Linguistics, Proceedings of the 31st International Conference on Computational Linguistics, Abu Dhabi, United Arab Emirates, January 19-24, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 7367-85. https://aclanthology.org/2025.coling-main.493/ (accessed 2025-11-12).
76. Hassani, S. Enhancing legal compliance and regulation analysis with large language models. In 2024 IEEE 32nd International Requirements Engineering Conference (RE), Reykjavik, Iceland, June 24-28, 2024; IEEE: Now York, USA, 2024; pp 507-11.
77. Fernández Martínez, M. d. C.; Fernández, A. AI in recruiting. multi-agent systems architecture for ethical and legal auditing. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}, Proceeding of the Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}, Macao, China August 10-16, 2019; International Joint Conferences on Artificial Intelligence Organization: Macao, China, 2019; pp 6428-9.
78. Deroy, A.; Ghosh, K.; Ghosh, S. How ready are pretrained abstractive models and LLMs for legal case judgement summarization. arXiv 2023, arXiv:2306.01248. Available online: https://arXiv.org/abs/2306.01248 (accessed 11 November 2025).
79. Vats, S.; Zope, A.; De, S.; et al. LLMs - the good, the bad or the indispensable?: A use case on legal statute prediction and legal judgment prediction on Indian court cases. In EMNLP 2023, Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023; Association for Computational Linguistics: Stroudsburg, USA, 2023; pp 12451-74.
80. Guha, N.; Nyarko, J.; Ho, D. E.; et al. Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language models. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Advances in Neural Information Processing Systems 36 (NeurIPS 2023), New Orleans, USA, December 10-16, 2023; Neural Information Processing Systems Foundation, Inc.: California, USA; 2023; pp 12451-74.
81. Zhao, X.; Qiao, X.; Ou, K.; et al. HW-TSC at SemEval-2024 Task 5: Self-Eval? A confident LLM system for auto prediction and evaluation for the legal argument reasoning task: In 18th International Workshop on Semantic Evaluation (SemEval-2024), Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), Mexico City, Mexico, June 20-21, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 1806-10.
82. Shu, D.; Zhao, H.; Liu, X.; Demeter, D.; Du, M.; Zhang, Y. LawLLM: law large language model for the US legal system. In CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management, Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, CIKM 2024, Boise, USA, October 21-25, 2024; Association for Computing Machinery: New York, USA, 2024; pp 4882-9.
83. Shen, C.; Ji, C.; Yue, S.; et al. Empowering LLMs for long-text information extraction in Chinese legal documents. In CCF International Conference on Natural Language Processing and Chinese Computing, Lecture Notes in Computer Science, Hangzhou China, November 1-3, 2024; Wong, D.F., Wei, Z., Yang, M., Eds.; Springer Nature: Singapore, 2024; Vol. 15359, pp 457-69.
84. Gray, M.; Zhang, L.; Ashley, K. D. Generating case-based legal arguments with LLMs. In CS&LAW '25: Symposium on Computer Science and Law, Proceeding of CS&LAW '25: Proceedings of the 2025 Symposium on Computer Science and Law, Munich, Germany, March 25-27, 2025; Association for Computing Machinery: New York, USA, 2025; pp 160-8.
85. Balı, Y.; Çiloğlugil, B. Leveraging large language models for natural language processing based tasks in the legal domain: a short survey. In International Conference on Computational Science and Its Applications (ICCSA 2025), Proceedings of the International Conference on Computational Science and Its Applications (ICCSA 2025), Istanbul, Türkiye, June 30-July 3, 2025; Springer Nature Switzerland AG: Cham, Switzerland, 2025; pp 166-78.
86. Liang, H.; Zhang, X.; Mahari, R.; et al. Leveraging large language models for learning complex legal concepts through storytelling. arXiv 2024, arXiv:2402.17019. Available online: https://arXiv.org/abs/2402.17019 (accessed 4 August 2025).
87. Hijazi, F.; Alharbi, S.; Alhussein, A. et al ArabLegalEval: A multitask benchmark for assessing Arabic legal knowledge in large language models. In The Second Arabic Natural Language Processing Conference, Proceedings of The Second Arabic Natural Language Processing Conference, Bangkok, Thailand, August 16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 225-49.
88. Kim, Y.; Choi, Y.; Choi, E.; Choi, J.; Park, H. J.; Hwang, W. Developing a pragmatic benchmark for assessing Korean legal language understanding in large language models. In The 2024 Conference on Empirical Methods in Natural Language Processing, Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, USA, November 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 5573-95.
89. Fei, Z.; Shen, X.; Zhu, D.; et al. LawBench: Benchmarking legal knowledge of large language models. In 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Miami, USA, November 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 7933-62.
90. Li, H.; Chen, Y.; Ai, Q.; Wu, Y.; Zhang, R.; Liu, Y. LexEval: a comprehensive chinese legal benchmark for evaluating large language models. arXiv 2023, arXiv:2310.05620. Available online: https://arXiv.org/abs/2409.20288 (accessed 11 November 2025).
91. Dai, Y.; Feng, D.; Huang, J. et al. LAiW: A Chinese legal large language models benchmark. arXiv 2023, arXiv:2310.05620. Available online: https://arXiv.org/abs/2310.05620 (accessed 11 November 2025).
92. Gan, R.; Feng, D.; Zhang, C. et al UCL-Bench: A Chinese user-centric legal benchmark for large language models. In 2025 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL 2025), Findings of the Association for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, April 29-May 4, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 7945-88.
93. Li, H.; Chen, J.; Yang, J. et al LegalAgentBench: evaluating LLM agents in legal domain. In 63rd Annual Meeting of the Association for Computational Linguistic, Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, Austria. July 27-30, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 2322-44.
94. Jia, Z.; Yue, S.; Chen, W. et al. Ready Jurist One: benchmarking language agents for legal intelligence in dynamic environments. arXiv 2025, arXiv:2507.04037. Available online: https://arxiv.org/abs/2507.04037 (accessed 11 November 2025).
95. Li, Y. H.; Wu, G. S. LegalEval-Q: a new benchmark for the quality evaluation of LLM-generated legal text. arXiv 2025, arXiv:2505.24826. Available online: https://arxiv.org/abs/2505.24826 (accessed 11 November 2025).
96. Tang, X.; Li, J.; Hu, K. et al CogniBench: a legal-inspired framework and dataset for assessing cognitive faithfulness of large language models. In 63rd Annual Meeting of the Association for Computational Linguistic, Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vienna, Austria. July 27-30, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 21567-85.
97. Deng, C.; Mao, K.; Zhang, Y.; Dou, Z. Enabling discriminative reasoning in LLMs for legal judgment prediction. In The 2024 Conference on Empirical Methods in Natural Language Processing, Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, USA, November 11-16, 2024; Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 784-96.
99. Sheik, R.; Siva Sundara, K. P.; Nirmala, S. J. Neural data augmentation for legal overruling task: small deep learning models vs. large language models. Neural. Process. Lett. 2024, 56, 121.
100. Krumov, K.; Boytcheva, S.; Koytchev, I. SU-FMI at SemEval-2024 Task 5: from BERT fine-tuning to LLM prompt engineering - approaches in legal argument reasoning. In 18th International Workshop on Semantic Evaluation (SemEval-2024), Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), Mexico City, Mexico, June 20-21, 2024. Association for Computational Linguistics: Stroudsburg, USA, 2024; pp 1652-8.
101. Johnson, E.; Holt, X.; Wilson, N. Improving the accuracy and efficiency of legal document tagging with large language models and instruction prompts. arXiv 2025, arXiv: 2504.21202. Available online: https://arxiv.org/abs/2504.09309 (accessed 11 November 2025).
102. Chen, H.; Zhang, L.; Liu, Y.; Yu, Y. Rethinking the development of large language models from the causal perspective: a legal text prediction case study. AAAI. 2024, 38, 20958-66.
103. Hu, Y.; Gan, L.; Xiao, W.; Kuang, K.; Wu, F. Fine-tuning large language models for improving factuality in legal question answering. arXiv 2025, arXiv:2501.06521. Available online: https://arXiv.org/abs/2501.06521 (accessed 11 November 2025).
104. Zeng, G.; Tian, G.; Zhang, G.; Lu, J. RoSiLC-RS: a robust similar legal case recommender system empowered by large language model and step-back prompting. Neurocomputing. 2025, 648, 130660.
105. Tang, Y.; Qiu, R.; Huang, Z. UQLegalAI@COLIEE2025: advancing legal case retrieval with large language models and graph neural networks. arXiv 2025, arXiv:2505.20743. Available online: https://arXiv.org/abs/2505.20743 (accessed 11 November 2025).
106. Zhou, Z.; Yu, K. Y.; Tian, S. Y.; et al. LawGPT: knowledge-guided data generation and its application to legal LLM. arXiv 2025, arXiv:2502.06572. Available online: https://arxiv.org/abs/2502.06572 (accessed 11 November 2025).
107. Chen, X.; Mao, M.; Li, S.; Shangguan, H. Debate-feedback: a multi-agent framework for efficient legal judgment prediction: In 2025 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL 2025), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), Albuquerque, New Mexico, April 29-May 4, 2025; Association for Computational Linguistics: Stroudsburg, USA, 2025; pp 462-70.


