REFERENCES
2. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213-24.
3. Zimmermann FM, Ferrara A, Johnson NP, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36:3182-8.
4. Martin WG, McNaughton E, Bambrough PB, West NEJ, Hoole SP. Interobserver variability between expert, experienced, and novice operator affects interpretation of optical coherence tomography and 20 MHz intravascular ultrasound imaging. Cardiovasc Revasc Med. 2023;47:33-9.
5. Parsa S, Somani S, Dudum R, Jain SS, Rodriguez F. Artificial intelligence in cardiovascular disease prevention: is it ready for prime time? Curr Atheroscler Rep. 2024;26:263-72.
6. Vidal-Perez R, Vazquez-Rodriguez JM. Role of artificial intelligence in cardiology. World J Cardiol. 2023;15:116-8.
7. Omori H, Matsuo H, Fujimoto S, et al. Determination of lipid-rich plaques by artificial intelligence-enabled quantitative computed tomography using near-infrared spectroscopy as reference. Atherosclerosis. 2023;386:117363.
8. El Sherbini A, Rosenson RS, Al Rifai M, et al. Artificial intelligence in preventive cardiology. Prog Cardiovasc Dis. 2024;84:76-89.
9. Choi AD, Marques H, Kumar V, et al. CT evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (CLARIFY): a multi-center, international study. J Cardiovasc Comput Tomogr. 2021;15:470-6.
10. Zhang Y, Feng Y, Sun J, et al. Fully automated artificial intelligence-based coronary CT angiography image processing: efficiency, diagnostic capability, and risk stratification. Eur Radiol. 2024;34:4909-19.
11. Moon IT, Kim SH, Chin JY, et al. Accuracy of artificial intelligence-based automated quantitative coronary angiography compared to intravascular ultrasound: retrospective cohort study. JMIR Cardio. 2023;7:e45299.
12. Rinehart S, Raible SJ, Ng N, et al. Utility of artificial intelligence plaque quantification: results of the DECODE study. J Soc Cardiovasc Angiogr Interv. 2024;3:101296.
13. van Assen M, von Knebel Doeberitz P, Quyyumi AA, De Cecco CN. Artificial intelligence for advanced analysis of coronary plaque. Eur Heart J Suppl. 2023;25:C112-7.
14. Lin A, Kolossváry M, Cadet S, et al. Radiomics-based precision phenotyping identifies unstable coronary plaques from computed tomography angiography. JACC Cardiovasc Imaging. 2022;15:859-71.
15. Lipkin I, Telluri A, Kim Y, et al. Coronary CTA with AI-QCT interpretation: comparison with myocardial perfusion imaging for detection of obstructive stenosis using invasive angiography as reference standard. AJR Am J Roentgenol. 2022;219:407-19.
16. Kim Y, Choi AD, Telluri A, et al. Atherosclerosis imaging quantitative computed tomography (AI-QCT) to guide referral to invasive coronary angiography in the randomized controlled CONSERVE trial. Clin Cardiol. 2023;46:477-83.
17. Khan H, Bansal K, Griffin WF, et al. Assessment of atherosclerotic plaque burden: comparison of AI-QCT versus SIS, CAC, visual and CAD-RADS stenosis categories. Int J Cardiovasc Imaging. 2024;40:1201-9.
18. Peters B, Paul JF, Symons R, Franssen WMA, Nchimi A, Ghekiere O. Invasive fractional-flow-reserve prediction by coronary CT angiography using artificial intelligence vs. computational fluid dynamics software in intermediate-grade stenosis. Int J Cardiovasc Imaging. 2024;40:1875-80.
19. Narimani-Javid R, Moradi M, Mahalleh M, et al. Machine learning and computational fluid dynamics derived FFRCT demonstrate comparable diagnostic performance in patients with coronary artery disease: a systematic review and meta-analysis. Eur Heart J. 2025;19:232-46.
20. Li Y, Yu M, Dai X, et al. Detection of hemodynamically significant coronary stenosis: CT myocardial perfusion versus machine learning CT fractional flow reserve. Radiology. 2019;293:305-14.
21. Chiou A, Hermel M, Sidhu R, et al. Artificial intelligence coronary computed tomography, coronary computed tomography angiography using fractional flow reserve, and physician visual interpretation in the per-vessel prediction of abnormal invasive adenosine fractional flow reserve. Eur Heart J Imaging Methods Pract. 2024;2:qyae035.
22. Dundas J, Leipsic J, Fairbairn T, et al. Interaction of AI-enabled quantitative coronary plaque volumes on coronary CT angiography, FFR(CT), and clinical outcomes: a retrospective analysis of the ADVANCE registry. Circ Cardiovasc Imaging. 2024;17:e016143.
23. Li J, Yang Z, Sun Z, et al. CT coronary fractional flow reserve based on artificial intelligence using different software: a repeatability study. BMC Med Imaging. 2024;24:288.
24. Guo B, Jiang M, Guo X, et al. Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD. Sci Bull. 2024;69:1472-85.
25. Yang J, Shan D, Wang X, et al. On-site computed tomography-derived fractional flow reserve to guide management of patients with stable coronary artery disease: the TARGET randomized trial. Circulation. 2023;147:1369-81.
26. Jaltotage B, Lu J, Dwivedi G. Use of artificial intelligence including multimodal systems to improve the management of cardiovascular disease. Can J Cardiol. 2024;40:1804-12.
27. Chan K, Wahome E, Tsiachristas A, et al. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study. Lancet. 2024;403:2606-18.
28. Napoli G, Pergola V, Basile P, et al. Epicardial and pericoronary adipose tissue, coronary inflammation, and acute coronary syndromes. J Clin Med. 2023;12:7212.
29. Aromiwura AA, Settle T, Umer M, et al. Artificial intelligence in cardiac computed tomography. Prog Cardiovasc Dis. 2023;81:54-77.
30. Kim Y, Yoon HJ, Suh J, et al. Artificial intelligence-based fully automated quantitative coronary angiography vs optical coherence tomography-guided PCI: the FLASH trial. JACC Cardiovasc Interv. 2025;18:187-97.
31. Chae J, Kweon J, Park GM, et al. Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation. Int J Cardiovasc Imaging. 2025;41:559-68.
32. Howard J, Reiber JHC. Automated analysis of coronary angiograms using artificial intelligence: a window into the cath lab of the future. EuroIntervention. 2021;17:16-7.
33. Gautam N, Saluja P, Malkawi A, et al. Current and future applications of artificial intelligence in coronary artery disease. Healthcare. 2022;10:232.
34. Nobre Menezes M, Oliveira CS, Silva JL, et al. Old habits die hard: can AI help bring coronary angiography into the 21st century? JACC Adv. 2024;3:101093.
35. Hae H, Kang SJ, Kim WJ, et al. Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation. PLoS Med. 2018;15:e1002693.
36. Alkhouli M, Rostami B, Attia Z, Friedman PA, Gulati R. LB-3|Artificial intelligence for extracting non-COronary data from angiography: the AI-ENCODE study. J Soc Cardiovasc Angiogr Interv. 2024;3:101870.
37. Ben-Assa E, Abu Salman A, Cafri C, et al. Performance of a novel artificial intelligence software developed to derive coronary fractional flow reserve values from diagnostic angiograms. Coron Artery Dis. 2023;34:533-41.
38. Omori H, Kawase Y, Mizukami T, et al. Diagnostic accuracy of artificial intelligence-based angiography-derived fractional flow reserve using pressure wire-based fractional flow reserve as a reference. Circ J. 2023;87:783-90.
39. Witberg G, Bental T, Levi A, et al. Clinical outcomes of FFRangio-guided treatment for coronary artery disease. JACC Cardiovasc Interv. 2022;15:468-70.
40. Xu B, Tu S, Song L, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet. 2021;398:2149-59.
41. Andersen BK, Sejr-Hansen M, Maillard L, et al. Quantitative flow ratio versus fractional flow reserve for coronary revascularisation guidance (FAVOR III Europe): a multicentre, randomised, non-inferiority trial. Lancet. 2024;404:1835-46.
42. Ploscaru V, Popa-Fotea NM, Calmac L, et al. Artificial intelligence and cloud based platform for fully automated PCI guidance from coronary angiography-study protocol. PLoS One. 2022;17:e0274296.
43. Yang S, Kweon J, Roh JH, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep. 2019;9:16897.
44. Aminorroaya A, Biswas D, Pedroso AF, Khera R. Harnessing artificial intelligence for innovation in interventional cardiovascular care. J Soc Cardiovasc Angiogr Interv. 2025;4:102562.
45. Behnoush AH, Ramandi A, Mahajan S, Altibi A, Samavarchitehrani A, Gupta R. Dynamic coronary roadmap in percutaneous coronary intervention: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2024;24:681.
46. Bartuś S, Siłka W, Kasprzycki K, et al. Experience with optical coherence tomography enhanced by a novel software (Ultreon™ 1.0 software)-the first one hundred cases. Medicina. 2022;58:1227.
47. Januszek R, Siłka W, Sabatowski K, et al. Procedure-related differences and clinical outcomes in patients treated with percutaneous coronary intervention assisted by optical coherence tomography between new and earlier generation software (Ultreon™ 1.0 software vs. AptiVue™ software). J Cardiovasc Dev Dis. 2022;9:218.
48. Sibbald M, Mitchell HR, Buccola J, Pinilla-Echeverri N. Impact of artificial intelligence-enhanced optical coherence tomography software on percutaneous coronary intervention decisions. J Soc Cardiovasc Angiogr Interv. 2025;4:102438.
49. Xu B, Zhang R. Virtual PCI powered by augmented reality: pave the way to optimal revascularization. JACC Cardiovasc Interv. 2023;16:795-7.
50. Tsai TY, Kageyama S, He X, et al. Feasibility and accuracy of real-time 3D-holographic graft length measurements. Eur Heart J Digit Health. 2024;5:101-4.
51. Ma H, Smal I, Daemen J, Walsum TV. Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering. Med Image Anal. 2020;61:101634.
52. Gala D, Behl H, Shah M, Makaryus AN. The role of artificial intelligence in improving patient outcomes and future of healthcare delivery in cardiology: a narrative review of the literature. Healthcare. 2024;12:481.
53. Singh M, Kumar A, Khanna NN, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine. 2024;73:102660.
54. Neri L, Oberdier MT, van Abeelen KCJ, et al. Electrocardiogram monitoring wearable devices and artificial-intelligence-enabled diagnostic capabilities: a review. Sensors. 2023;23:4805.
55. Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB. Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: a systematic review and meta-analysis. Yonsei Med J. 2022;63:S93-S107.
56. Bozyel S, Şimşek E, Koçyiğit Burunkaya D, et al. Artificial intelligence-based clinical decision support systems in cardiovascular diseases. Anatol J Cardiol. 2024;28:74-86.
57. Olawade DB, Aderinto N, Olatunji G, Kokori E, David-Olawade AC, Hadi M. Advancements and applications of Artificial Intelligence in cardiology: current trends and future prospects. J Med Surg Public Health. 2024;3:100109.
58. Sadeghi Z, Alizadehsani R, Cifci MA, et al. A review of explainable artificial intelligence in healthcare. Comput Electr Eng. 2024;118:109370.
59. Alkhanbouli R, Matar Abdulla Almadhaani H, Alhosani F, Simsekler MCE. The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions. BMC Med Inform Decis Mak. 2025;25:110.
60. Rudnicka Z, Pręgowska A, Glądys K, Perkins M, Proniewska K. Advancements in artificial intelligence-driven techniques for interventional cardiology. Cardiol J. 2024;31:321-41.
61. Maor E, Eleid MF, Gulati R, Lerman A, Sandhu GS. Current and future use of robotic devices to perform percutaneous coronary interventions: a review. J Am Heart Assoc. 2017;6:e006239.
62. Khokhar AA, Marrone A, Bermpeis K, et al. Latest developments in robotic percutaneous coronary interventions. Interv Cardiol. 2023;18:e30.
63. Hofmann FJ, Dörr O, Blachutzik F, et al. Latest developments in robotic percutaneous coronary intervention. Surg Technol Int. 2021;38:325-30.
64. Durand E, Eltchaninoff H. Robotic-assisted percutaneous coronary intervention: the future or the past? EuroIntervention. 2024;20:19-20.
65. Rajakumar HK. Is artificial intelligence-based quantitative coronary angiography ready for clinical adoption? Ind J Clin Cardiol. 2025;6:92-3.
66. Samant S, Bakhos JJ, Wu W, et al. Artificial intelligence, computational simulations, and extended reality in cardiovascular interventions. JACC Cardiovasc Interv. 2023;16:2479-97.
67. Mihan A, Pandey A, Van Spall HGC. Artificial intelligence bias in the prediction and detection of cardiovascular disease. NPJ Cardiovasc Health. 2024;1:31.
68. Mihan A, Pandey A, Van Spall HG. Mitigating the risk of artificial intelligence bias in cardiovascular care. Lancet Digit Health. 2024;6:e749-54.
69. Assen M, Beecy A, Gershon G, Newsome J, Trivedi H, Gichoya J. Implications of bias in artificial intelligence: considerations for cardiovascular imaging. Curr Atheroscler Rep. 2024;26:91-102.
70. Nolin-Lapalme A, Corbin D, Tastet O, Avram R, Hussin JG. Advancing fairness in cardiac care: strategies for mitigating bias in artificial intelligence models within cardiology. Can J Cardiol. 2024;40:1907-21.