REFERENCES

1. van Soest G, Goderie TP, Gonzalo N, et al. Imaging atherosclerotic plaque composition with intracoronary optical coherence tomography. Neth Heart J. 2009;17:448-50.

2. Dini CS, Nardi G, Ristalli F, Mattesini A, Hamiti B, di Mario  C. Contemporary approach to heavily calcified coronary lesions. Interv Cardiol. 2019;14:154-63.

3. Torii S, Jinnouchi H, Sakamoto A, et al. Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J. 2020;41:786-96.

4. Onnis C, Virmani R, Kawai K, et al. Coronary artery calcification: current concepts and clinical implications. Circulation. 2024;149:251-66.

5. Huisman J, van der Heijden LC, Kok MM, et al. Impact of severe lesion calcification on clinical outcome of patients with stable angina, treated with newer generation permanent polymer-coated drug-eluting stents: a patient-level pooled analysis from TWENTE and DUTCH PEERS (TWENTE II). Am Heart J. 2016;175:121-9.

6. Généreux P, Redfors B, Witzenbichler B, et al. Two-year outcomes after percutaneous coronary intervention of calcified lesions with drug-eluting stents. Int J Cardiol. 2017;231:61-7.

7. Rheude T, Fitzgerald S, Allali A, et al. Rotational atherectomy or balloon-based techniques to prepare severely calcified coronary lesions. JACC Cardiovasc Interv. 2022;15:1864-74.

8. Andò G, Vizzari G, Niccoli G, et al. a nome del Gruppo di Studio “Cardiologia Interventistica” della Società Italiana di Cardiologia. Evaluation and percutaneous treatment of severely calcified coronary lesions. G Ital Cardiol. 2021;22:480-9.

9. Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;13:e2182-9.

10. Kang DY, Ahn JM, Yun SC, et al. OCTIVUS Investigators. Optical coherence tomography-guided or intravascular ultrasound-guided percutaneous coronary intervention: the OCTIVUS randomized clinical trial. Circulation. 2023;148:1195-206.

11. Kang DY, Ahn JM, Yun SC, et al. OCTIVUS Investigators. Guiding intervention for complex coronary lesions by optical coherence tomography or intravascular ultrasound. J Am Coll Cardiol. 2024;83:401-13.

12. Burzotta F, Louvard Y, Lassen JF, et al. Percutaneous coronary intervention for bifurcation coronary lesions using optimised angiographic guidance: the 18th consensus document from the European Bifurcation Club. EuroIntervention. 2024;20:e915-26.

13. Barbato E, Gallinoro E, Abdel-Wahab M, et al. Management strategies for heavily calcified coronary stenoses: an EAPCI clinical consensus statement in collaboration with the EURO4C-PCR group. Eur Heart J. 2023;44:4340-56.

14. Kobayashi N, Ito Y, Yamawaki M, et al. Optical coherence tomography-guided versus intravascular ultrasound-guided rotational atherectomy in patients with calcified coronary lesions. EuroIntervention. 2020;16:e313-21.

15. Forero MN, Wilschut J, van Mieghem NM, Daemen J. Coronary lithoplasty: a novel treatment for stent underexpansion. Eur Heart J. 2019;40:221.

16. Ali ZA, McEntegart M, Hill JM, Spratt JC. Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification. Eur Heart J. 2020;41:485-6.

17. Nagaraja V, Ubaid S, Khoo C, Ratib K. Intravascular lithotripsy for stent underexpansion despite utilization of rotational atherectomy for plaque modification. Cardiovasc Revasc Med. 2020;21:147-8.

18. Caracciolo A, Mazzone P, Laterra G, et al. Antithrombotic therapy for percutaneous cardiovascular interventions: from coronary artery disease to structural heart interventions. J Clin Med. 2019;8:2016.

19. Achim A, Alampi C, Krivoshei L, Leibundgut G. In vitro effect of intravascular lithotripsy on the polymer of a drug-eluting stent. EuroIntervention. 2022;18:e333-4.

20. Dattilo G, Bitto R, Correale M, et al. Trend of perceived quality of life and functional capacity in outpatients with chronic heart failure and in treatment with sacubitril/valsartan: a real-life experience. Minerva Cardiol Angiol. 2022;70:555-62.

21. Cuculi F, Bossard M, Zasada W, et al. Performing percutaneous coronary interventions with predilatation using non-compliant balloons at high-pressure versus conventional semi-compliant balloons: insights from two randomised studies using optical coherence tomography. Open Heart. 2020;7:e001204.

22. Caminiti R, Vizzari G, Ielasi A, et al. >Drug-coated balloon versus drug-eluting stent for treating de novo large vessel coronary artery disease: a systematic review and meta-analysis of 13 studies involving 2888 patients. Clin Res Cardiol. 2024.

23. Lhermusier T, Motreff P, Bataille V, et al. TIcagrelor in rotational atherectomy to reduce TROPonin enhancement: the TIRATROP study, a randomized controlled trial. J Clin Med. 2023;12:1445.

24. Díaz JF, Gómez-Menchero A, Cardenal R, Sánchez-González C, Sanghvi A. Extremely high-pressure dilation with a new noncompliant balloon. Tex Heart Inst J. 2012;39:635-8.

25. Mauri L, Bonan R, Weiner BH, et al. Cutting balloon angioplasty for the prevention of restenosis: results of the cutting balloon global randomized trial. Am J Cardiol. 2002;90:1079-83.

26. Schmidt T, Hansen S, Meincke F, Frerker C, Kuck KH, Bergmann MW. Safety and efficacy of lesion preparation with the AngioSculpt Scoring Balloon in left main interventions: the ALSTER left main registry. EuroIntervention. 2016;11:1346-54.

27. Fonseca A, Costa Jde R Jr, Abizaid A, et al. Intravascular ultrasound assessment of the novel AngioSculpt scoring balloon catheter for the treatment of complex coronary lesions. J Invasive Cardiol. 2008;20:21-7.

28. Mashayekhi KA, Pyxaras SA, Werner GS, et al. Contemporary issues of percutaneous coronary intervention in heavily calcified chronic total occlusions: an expert review from the European CTO Club. EuroIntervention. 2023;19:e113-22.

29. Barbato E, Carrié D, Dardas P, et al. European Association of Percutaneous Cardiovascular Interventions. European expert consensus on rotational atherectomy. EuroIntervention. 2015;11:30-6.

30. Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. JACC. 2022;79:197-215.

31. Galassi AR, Vadalà G, Werner GS, et al. Evaluation and management of patients with coronary chronic total occlusions considered for revascularisation. A clinical consensus statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the ESC, the European Association of Cardiovascular Imaging (EACVI) of the ESC, and the ESC Working Group on Cardiovascular Surgery. EuroIntervention. 2024;20:e174-84.

32. Bacmeister L, Breitbart P, Sobolewska K, et al. Planned versus unplanned rotational atherectomy for plaque modification in severely calcified coronary lesions. Clin Res Cardiol. 2023;112:1252-62.

33. Kawamoto H, Latib A, Ruparelia N, et al. In-hospital and midterm clinical outcomes of rotational atherectomy followed by stent implantation: the ROTATE multicentre registry. EuroIntervention. 2016;12:1448-56.

34. Jinnouchi H, Kuramitsu S, Shinozaki T, et al. Two-year clinical outcomes of newer-generation drug-eluting stent implantation following rotational atherectomy for heavily calcified lesions. Circ J. 2015;79:1938-43.

35. Abdel-Wahab M, Richardt G, Joachim Büttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (rotational atherectomy prior to taxus stent treatment for complex native coronary artery disease) trial. JACC Cardiovasc Interv. 2013;6:10-9.

36. de Waha S, Allali A, Büttner HJ, et al. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: two-year clinical outcome of the randomized ROTAXUS trial. Catheter Cardiovasc Interv. 2016;87:691-700.

37. Abdel-Wahab M, Toelg R, Byrne RA, et al. High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Cardiovasc Interv. 2018;11:e007415.

38. Parikh K, Chandra P, Choksi N, Khanna P, Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81:1134-9.

39. Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7:510-8.

40. Redfors B, Sharma SK, Saito S, et al. Novel micro crown orbital atherectomy for severe lesion calcification: coronary orbital atherectomy system study (COAST). Circ Cardiovasc Interv. 2020;13:e008993.

41. Généreux P, Kirtane AJ, Kandzari DE, et al. Randomized evaluation of vessel preparation with orbital atherectomy prior to drug-eluting stent implantation in severely calcified coronary artery lesions: Design and rationale of the ECLIPSE trial. Am Heart J. 2022;249:1-11.

42. Kirtane AJ, Généreux P, Lewis B, et al. ECLIPSE Investigators. Orbital atherectomy versus balloon angioplasty before drug-eluting stent implantation in severely calcified lesions eligible for both treatment strategies (ECLIPSE): a multicentre, open-label, randomised trial. Lancet. 2025;405:1240-51.

43. Okamoto N, Egami Y, Nohara H, et al. Direct comparison of rotational vs orbital atherectomy for calcified lesions guided by optical coherence tomography. JACC Cardiovasc Interv. 2023;16:2125-36.

44. Forero MNT, Daemen J. The coronary intravascular lithotripsy system. Interv Cardiol. 2019;14:174-81.

45. Ali ZA, Nef H, Escaned J, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the disrupt CAD II study. Circ Cardiovasc Interv. 2019;12:e008434.

46. Brinton TJ, Ali ZA, Hill JM, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019;139:834-6.

47. Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Disrupt CAD III Investigators. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol. 2020;76:2635-46.

48. Sintek M, Coverstone E, Bach R, et al. Excimer laser coronary angioplasty in coronary lesions: use and safety from the NCDR/CATH PCI registry. Circ Cardiovasc Interv. 2021;14:e010061.

49. Vizzari G, Caminiti R, Ielasi A, et al. Contrast-enhanced excimer laser stepwise approach during PCI for resistant coronary lesions. Catheter Cardiovasc Interv. 2024;104:220-6.

50. Cobarro L, Jurado-román A, Tébar-márquez D, et al. Excimer laser coronary atherectomy in severely calcified lesions: time to bust the myth. REC Interv Cardiol. 2024; doi: 10.24875/RECICE.M23000412.

51. Caminiti R, Vetta G, Parlavecchio A, et al. A Systematic review and meta-analysis including 354 patients from 13 studies of intravascular lithotripsy for the treatment of underexpanded coronary stents. Am J Cardiol. 2023;205:223-30.

52. Tehrani S, Rathore S, Achan V. Changing paradigm for treatment of heavily calcified coronary artery disease. A complementary role of rotational atherectomy and intravascular lithotripsy with shockwave balloon: a case report. Eur Heart J Case Rep. 2021;5:ytaa456.

53. Blachutzik F, Meier S, Blachutzik M, et al. ROTA. shock Investigators. Comparison of interventional treatment options for coronary calcified nodules: a sub-analysis of the ROTA.shock trial. Cardiovasc Revasc Med. 2024;68:37-42.

54. Aznaouridis K, Bonou M, Masoura C, Kapelios C, Tousoulis D, Barbetseas J. Rotatripsy: a hybrid “drill and disrupt” approach for treating heavily calcified coronary lesions. J Invasive Cardiol. 2020;32:E175.

55. Jurado-Román A, Gonzálvez A, Galeote G, Jiménez-Valero S, Moreno R. RotaTripsy: combination of rotational atherectomy and intravascular lithotripsy for the treatment of severely calcified lesions. JACC Cardiovasc Interv. 2019;12:e127-9.

56. Ielasi A, Loffi M, De Blasio G, Tespili M. “Rota-Tripsy”: a successful combined approach for the treatment of a long and heavily calcified coronary lesion. Cardiovasc Revasc Med. 2020;21:152-4.

57. Sardella G, Stefanini G, Leone PP, et al. Coronary lithotripsy as elective or bail-out strategy after rotational atherectomy in the rota-shock registry. Am J Cardiol. 2023;198:1-8.

58. Cui F, Tong Y, Yang P, et al. Rota-tripsy or step-up-approach rotational atherectomy for severe coronary artery calcification treatment: a comparative effectiveness study. Sci Rep. 2024;14:29866.

59. Protty MB, Gallagher S, Farooq V, et al. Combined use of rotational and excimer lASER coronary atherectomy (RASER) during complex coronary angioplasty-an analysis of cases (2006-2016) from the British Cardiovascular Intervention Society database. Catheter Cardiovasc Interv. 2021;97:E911-8.

60. Sharma SK, Mehran R, Vogel B, et al. Rotational atherectomy combined with cutting balloon to optimise stent expansion in calcified lesions: the ROTA-CUT randomised trial. EuroIntervention. 2024;20:75-84.

61. Allali A, Toelg R, Abdel-Wahab M, et al. Combined rotational atherectomy and cutting balloon angioplasty prior to drug-eluting stent implantation in severely calcified coronary lesions: the PREPARE-CALC-COMBO study. Catheter Cardiovasc Interv. 2022;100:979-89.

62. Włodarczak S, Rola P, Furtan Ł, et al. Orbital-tripsy - orbital atherectomy facilitated by shockwave intravascular lithotripsy: novel bailout strategy in percutaneous coronary intervention in heavily calcified coronary lesions. Kardiol Pol. 2023;81:296-7.

63. Yarusi BB, Jagadeesan VS, Hussain S, et al. Combined coronary orbital atherectomy and intravascular lithotripsy for the treatment of severely calcified coronary stenoses: the first case series. J Invasive Cardiol. 2022;34:E210-7.

64. Jurado-Román A, García A, Moreno R. ELCA-tripsy: combination of laser and lithotripsy for severely calcified lesions. J Invasive Cardiol. 2021;33:E754-5.

65. Venuti G, D’Agosta G, Tamburino C, La Manna A. Coronary lithotripsy for failed rotational atherectomy, cutting balloon, scoring balloon, and ultra-high-pressure non-compliant balloon. Catheter Cardiovasc Interv. 2019;94:E111-5.

66. Jurado-Román A, Gómez-Menchero A, Rivero-Santana B, et al. Rotational atherectomy, lithotripsy, or laser for calcified coronary stenosis: the ROLLER COASTR-EPIC22 Trial. JACC Cardiovasc Interv. 2025;18:606-18.

67. Lehker A, Mukherjee D. Coronary calcium risk score and cardiovascular risk. Curr Vasc Pharmacol. 2021;19:280-4.

68. Laterra G, Strazzieri O, Reddavid C, et al. Evaluation and management of coronary artery disease in transcatheter aortic valve implantation candidates with severe aortic stenosis and coronary artery disease: technology and techniques. Expert Rev Med Devices. 2024;21:915-25.

69. Rheude T, Costa G, Ribichini FL, et al. Comparison of different percutaneous revascularisation timing strategies in patients undergoing transcatheter aortic valve implantation. EuroIntervention. 2023;19:589-99.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/