REFERENCES

1. Liu Q, Zheng Y, Zhang Y, Poon CCY. Beats-to-beats estimation of blood pressure during supine cycling exercise using a probabilistic nonparametric method. IEEE Access 2021;9:115655-63.

2. World health statistics 2015. Geneva: World Health Organization; 2015. Avaliable from: https://www.who.int/publications/i/item/9789240694439 [Last accessed on 16 Oct 2023].

3. Chow CK, Teo KK, Rangarajan S, et al. PURE (Prospective Urban Rural Epidemiology) Study investigators. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959-68.

4. Thambiraj G, Gandhi U, Mangalanathan U, Jose VJM, Anand M. Investigation on the effect of Womersley number, ECG and PPG features for cuff less blood pressure estimation using machine learning. Biomed Signal Process Control 2020;60:101942.

5. Simjanoska M, Gjoreski M, Bogdanova AM, Koteska B, Gams M, Tasic JF. ECG-derived blood pressure classification using complexity analysis-based machine learning. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, 2018 Jan 19-21; Funchal, Portugal.

6. Zhou ZB, Cui TR, Li D, et al. Wearable continuous blood pressure monitoring devices based on pulse wave transit time and pulse arrival time: a review. Materials 2023;16:2133.

7. Ding XR, Zhao N, Yang GZ, et al. Continuous blood pressure measurement from invasive to unobtrusive: celebration of 200th birth anniversary of Carl Ludwig. IEEE J Biomed Health Inform 2016;20:1455-65.

8. Poon CC, Zhang YT. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. Conf Proc IEEE Eng Med Biol Soc 2005;2005:5877-80.

9. Ding XR, Zhang YT, Liu J, Dai WX, Tsang HK. Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans Biomed Eng 2016;63:964-72.

10. Yan WR, Peng RC, Zhang YT, Ho D. Cuffless continuous blood pressure estimation from pulse morphology of photoplethysmograms. IEEE Access 2019;7:141970-7.

11. Esmaelpoor J, Moradi MH, Kadkhodamohammadi A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput Biol Med 2020;120:103719.

12. Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care II: a public-access intensive care unit database. Crit Care Med 2011;39:952-60.

13. Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. Proceedings of IEEE international symposium on circuits and systems (ISCAS); 2015 May 24-27; Lisbon, Portugal.

14. Chen H, Das S, Morgan J, Maharatna K. An effective PSR-based arrhythmia classifier using self-similarity analysis. Biomed Signal Process Control 2021;69:102851.

15. Chen H, Maharatna K. An automatic R-peak detection method based on hierarchical clustering. Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS); 2019 Oct 17-19; Nara, Japan.

16. Teng XF, Zhang YT. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439); 2003 Sep 17-21; Cancun, Mexico.

17. Khaire UM, Dhanalakshmi R. Stability of feature selection algorithm: a review. Comput Inf Sci 2022;34:1060-73.

18. Robnik-šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 2003;53:23-69.

19. Zhang L, Ji Z, Yang F, Chen G. Noninvasive continuous blood pressure estimation with fewer parameters based on RA-ReliefF feature selection and MPGA-BPN models. Biomed Signal Process Control 2023;84:104757.

20. Raju STU, Dipto SA, Hossain MI, et al. A novel technique for continuous blood pressure estimation from optimal feature set of ppg signal using deep learning approach. Res Sq Forthcoming 2023.

21. Kavsaoğlu AR, Polat K, Hariharan M. Non-invasive prediction of hemoglobin level using machine learning techniques with the PPG signal's characteristics features. Appl Soft Comput 2015;37:983-91.

22. Vergara JR, Estévez PA. A review of feature selection methods based on mutual information. Neural Comput Appl 2014;24:175-86.

23. Goldberger J, Hinton GE, Roweis S, Salakhutdinov RR. Neighbourhood components analysis. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems 17. Cambridge: The MIT Press; 2005.

24. Raghu S, Sriraam N. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms. Expert Syst Appl 2018;113:18-32.

25. Amodei D, Ananthanarayanan S, Anubhai R, et al. Deep speech 2: end-to-end speech recognition in English and Mandarin. Proceedings of The 33rd International Conference on Machine Learning; 2016 Jun 19-24; New York, USA.

26. Li S, Li W, Cook C, Zhu C, Gao Y. Independently recurrent neural network (indrnn): Building a longer and deeper rnn. Proceedings of the IEEE conference on computer vision and pattern recognition; 2018 Jun 18-22; Salt Lake City, USA.

27. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016 Jun 27-30; Las Vegas, USA.

28. Karun KM, Puranik A. BA.plot: an R function for bland-altman analysis. Clin Epidemiol Glob Health 2021;12:100831.

29. Qiu Y, Liu D, Yang G, et al. Cuffless blood pressure estimation based on composite neural network and graphics information. Biomed Signal Process Control 2021;70:103001.

30. El-hajj C, Kyriacou P. Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism. Biomed Signal Process Control 2021;65:102301.

31. Ganti VG, Carek AM, Nevius BN, Heller JA, Etemadi M, Inan OT. Wearable cuff-less blood pressure estimation at home via pulse transit time. IEEE J Biomed Health Inform 2021;25:1926-37.

32. O'Brien E, Petrie J, Littler W, et al. The British hypertension society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens 1990;8:607-19.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/