REFERENCES

1. Galea N, Catapano F, Marchitelli L, et al. How to perform a cardio-thoracic magnetic resonance imaging in COVID-19: comprehensive assessment of heart, pulmonary arteries, and lung parenchyma. Eur Heart J Cardiovasc Imaging 2021;22:728-31.

2. Rischard J, Waldmann V, Moulin T. Assessment of heart rhythm disorders using the AliveCor heart monitor: beyond the detection of atrial fibrillation. JACC Clin Electrophysiol 2020;6:1313-5.

3. Pollard JD, Haq KT, Lutz KJ, et al. Electrocardiogram machine learning for detection of cardiovascular disease in African Americans: the jackson heart study. Eur Heart J Digit Health 2021;2:137-51.

4. Kaisti M, Panula T, Leppänen J, et al. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit Med 2019;2:39.

5. Hagendorff A, Knebel F, Helfen A, et al. Echocardiographic assessment of mitral regurgitation: discussion of practical and methodologic aspects of severity quantification to improve diagnostic conclusiveness. Clin Res Cardiol 2021;110:1704-33.

6. Sandino CM, Lai P, Vasanawala SS, Cheng JY. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med 2021;85:152-67.

7. Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc Imaging 2020;13:374-81.

8. Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-Art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging 2019;12:1549-65.

9. Chen TM, Huang CH, Shih ESC, Hu YF, Hwang MJ. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model. iScience 2020;23:100886.

10. Alotaibi FS. Implementation of machine learning model to predict heart failure disease. Int J Adv Comput Sci Appl 2019;10:261-8.

11. Feeny AK, Chung MK, Madabhushi A, et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol 2020;13:e007952.

12. Krittanawong C, Rogers AJ, Johnson KW, et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 2021;18:75-91.

13. Zhuang Z, Liu G, Ding W, et al. Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation. Comput Med Imaging Graph 2020;82:101732.

14. Smistad E, Ostvik A, Salte IM, et al. Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans Ultrason Ferroelectr Freq Control 2020;67:2595-604.

15. Arafati A, Hu P, Finn JP, et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc Diagn Ther 2019;9:S310-25.

16. Saba SS, Sreelakshmi D, Sampath Kumar P, Sai Kumar K, Saba SR. Logistic regression machine learning algorithm on MRI brain image for fast and accurate diagnosis. Int J Sci Technol Res 2020;9:7076-81. Available from: http://www.ijstr.org/final-print/mar2020/Logistic-Regression-Machine-Learning-Algorithm-On-Mri-Brain-Image-For-Fast-And-Accurate-Diagnosis.pdf [Last accessed on 4 Jul 2024].

17. Sahu AK, Swain G. Reversible image steganography using dual-layer LSB matching. Sens Imaging 2020;21:1.

18. Banchhor C, Srinivasu N. Integrating cuckoo search-grey wolf optimization and correlative naive bayes classifier with map reduce model for big data classification. Data Knowl Eng 2020;127:101788.

19. Gorla US, Rao K, Kulandaivelu US, Alavala RR, Panda SP. Lead finding from selected flavonoids with antiviral (SARS-CoV-2) potentials against COVID-19: an in-silico evaluation. Comb Chem High Throughput Screen 2021;24:879-90.

20. Niranjan A, Venkata KS, P Deepa S, Venugopal KR. ERCRFS: ensemble of random committee and random forest using stackingC for phishing classification. Int J Emerg Trends Eng Res 2020;8:79-86. Available from: https://doi.org/10.30534/ijeter/2020/13812020 [Last accessed on 4 Jul 2024].

21. Mubarakali A, Ashwin M, Mavaluru D, Kumar AD. Design an attribute based health record protection algorithm for healthcare services in cloud environment. Multimed Tools Appl 2020;79:3943-56.

22. Doppala BP, Midhunchakkravarthy, Bhattacharyya D. Premature detection of cardiomegaly using hybrid machine learning technique. J Adv Res Dyn Control Syst 2020;12:490-8. Available from: https://www.jardcs.org/abstract.php?id=4619 [Last accessed on 4 Jul 2024].

23. Saikumar K, Rajesh V. A novel implementation heart diagnosis system based on random forest machine learning technique. Int J Pharm Rese 2020;12:3904-16.

24. Elsheikh AH, Muthuramalingam T, Shanmugan S, et al. Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of inconel 718. J Mater Res Technol 2021;15:3622-34.

25. Ramesh KKD, Kumar GK, Swapna K, Datta D, Rajest SS. A review of medical image segmentation algorithms. EAI Endors Trans Pervas Health Technol 2021;7:27.

26. Kavitha T, Mathai PP, Karthikeyan C, et al. Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images. Interdiscip Sci 2022;14:113-29.

27. Pareek PK, Sridhar C, Kalidoss R, et al. IntOPMICM: intelligent medical image size reduction model. J Healthc Eng 2022;2022:5171016.

28. Kumar EK, Kishore P, Kiran Kumar MT, Kumar DA. 3D sign language recognition with joint distance and angular coded color topographical descriptor on a 2 - stream CNN. Neurocomputing 2020;372:40-54.

29. Saikumar K, Rajesh V, Babu BS. Heart disease detection based on feature fusion technique with augmented classification using deep learning technology. Treat Signal 2022;39:31-42.

30. Rao KS, Samyuktha W, Vardhan DV, et al. Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement. Microsyst Technol 2020;26:2371-9.

31. Ahammad SH, Rajesh V, Rahman MZU, Lay-ekuakille A. A hybrid CNN-based segmentation and boosting classifier for real time sensor spinal cord injury data. IEEE Sensors J 2020;20:10092-101.

32. SaiSowmya B, Radha V, Kiran I, PavanKumar T. An efficient way of detecting change in tsunami disaster using CNN. J Adv Res Dyn Control Syst 2020;12:1128-33. Available from: https://www.jardcs.org/abstract.php?id=4369 [Last accessed on 4 Jul 2024].

33. Sengan S, Sagar PV, Ramesh R, Khalaf OI, Dhanapal R. The optimization of reconfigured real-time datasets for improving classification performance of machine learning algorithms. Math Eng Sci Aerosp 2021;12:43-54. Available from: http://nonlinearstudies.com/index.php/mesa/article/view/2497 [Last accessed on 4 Jul 2024].

34. Rachapudi V, Lavanya Devi G. Improved convolutional neural network based histopathological image classification. Evol Intel 2021;14:1337-43.

35. Routray S, Malla PP, Sharma SK, Panda SK, Palai G. A new image denoising framework using bilateral filtering based non-subsampled shearlet transform. Optik 2020;216:164903.

36. Abi B, Acciarri R, Acero MA, et al. DUNE Collaboration. Neutrino interaction classification with a convolutional neural network in the DUNE far detector. Phys Rev D 2020;102:092003.

37. Reddy AVN, Krishna CP, Mallick PK. An image classification framework exploring the capabilities of extreme learning machines and artificial bee colony. Neural Comput Appl 2020;32:3079-99.

38. Mandhala VN, Bhattacharyya D, Vamsi B, Rao N T. Object detection using machine learning for visually impaired people. Int J Curr Res Rev 2020;12:157-67. Available from: https://ijcrr.com/uploads/3009_pdf.pdf [Last accessed on 4 Jul 2024].

39. Bhimavarapu U, Battineni G. Skin lesion analysis for melanoma detection using the novel deep learning model fuzzy GC-SCNN. Healthcare 2022;10:962.

40. Rani S, Ghai D, Kumar S, Kantipudi MP, Alharbi AH, Ullah MA. Efficient 3D AlexNet architecture for object recognition using syntactic patterns from medical images. Comput Intell Neurosci 2022;2022:7882924.

41. Sudha GS, Praveena M, Rani GS, Harish TNSK, Charisma A, Asish A. Classification and detection of diabetic retinopathy using deep learning. Int J Sci Technol Res 2020;9:3186-92. Available from: https://www.ijstr.org/final-print/apr2020/Classification-And-Detection-Of-Diabetic-Retinopathy-Using-Deep-Learning.pdf [Last accessed on 4 Jul 2024].

42. Srihari D, Kishore PVV, Kumar EK, et al. A four-stream ConvNet based on spatial and depth flow for human action classification using RGB-D data. Multimed Tools Appl 2020;79:11723-46.

43. Praveen SP, Murali Krishna TB, Anuradha CH, Mandalapu SR, Sarala P, Sindhura S. A robust framework for handling health care information based on machine learning and big data engineering techniques. Int J Healthc Manag 2022; doi: 10.1080/20479700.2022.2157071.

44. Nurmaini S, Rachmatullah MN, Sapitri AI, et al. Deep learning-based computer-aided fetal echocardiography: application to heart standard view segmentation for congenital heart defects detection. Sensors 2021;21:8007.

45. Østvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med Biol 2019;45:374-84.

46. Prabu S, Thiyaneswaran B, Sujatha M, Nalini C, Rajkumar S. Grid search for predicting coronary heart disease by tuning hyper-parameters. Comput Syst Sci Eng 2022;43:737-49.

47. Saikumar K, Rajesh V, Hasane Ahammad SK, Sai Krishna M, Sai Pranitha G, Ajay Kumar Reddy R. CAB for heart diagnosis with RFO artificial intelligence algorithm. Int J Res Pharm Sci 2020;11:1199-205. Available from: https://ijrps.com/home/article/view/762 [Last accessed on 4 Jul 2024].

48. Pande SD, Chetty MS. Linear bezier curve geometrical feature descriptor for image recognition. Recent Adv Comput Sci Commun 2020;13:930-41.

49. Hazarika BB, Gupta D. 1-norm random vector functional link networks for classification problems. Complex Intell Syst 2022;8:3505-21.

50. Doppala BP, Bhattacharyya D, Janarthanan M, Baik N. A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques. J Healthc Eng 2022;2022:2585235.

51. Priyanka Chandra C, Thirupathi Rao N, Debnath B, Tai-hoon K. Segmentation of natural images with K-means and hierarchical algorithm based on mixture of pearson distributions. J Sci Indust Res 2021;80:707-15.

52. Krishna PR, Rajarajeswari P. EapGAFS: microarray dataset for ensemble classification for diseases prediction. Int J Recent Innov Trends Comput Commun 2022;10:1-15.

53. Rani S, Lakhwani K, Kumar S. Three dimensional objects recognition & pattern recognition technique; related challenges: a review. Multimed Tools Appl 2022;81:17303-46.

54. Saikumar K, Rajesh V. A machine intelligence technique for predicting cardiovascular disease (CVD) using radiology dataset. Int J Syst Assur Eng Manag 2024;15:135-51.

55. Nyemeesha V, Ismail BM. Implementation of noise and hair removals from dermoscopy images using hybrid Gaussian filter. Netw Model Anal Health Inform Bioinfor 2021;10:49.

56. Tripathy R, Nayak RK, Das P, Mishra D. Cellular cholesterol prediction of mammalian ATP-binding cassette (ABC) proteins based on fuzzy c-means with support vector machine algorithms. J Intell Fuzzy Syst 2020;39:1611-8.

57. Vijayalakshmi A, Ghali VS, Chandrasekhar Yadav GVP, Gopitilak V, Parvez M M. Machine learning based automatic defect detection in non-stationary thermal wave imaging. ARPN J Eng Appl Sci 2020;15:172-8. Available from: https://www.arpnjournals.org/jeas/research_papers/rp_2020/jeas_0120_8082.pdf [Last accessed on 4 Jul 2024].

58. Brahmane AV, Krishna CB. Rider chaotic biography optimization-driven deep stacked auto-encoder for big data classification using spark architecture: rider chaotic biography optimization. Int J Web Serv Res 2021;18:42-62.

59. Inthiyaz S, Ahammad SH, Sai Krishna A, Bhargavi V, Govardhan D, Rajesh V. YOLO (you only look once) making object detection work in medical imaging on convolution detection system. Int J Pharm Res 2020;12:312-26.

60. Swathi K, Kodukula S. XGBoost classifier with hyperband optimization for cancer prediction based on geneselection by using machine learning techniques. Revue Intell Artif 2022;36:665-70.

61. Gowroju S, Aarti, Kumar S. Review on secure traditional and machine learning algorithms for age prediction using IRIS image. Multimed Tools Appl 2022;81:35503-31.

62. Dakshina Murthy AS, Karthikeyan T, Omkar Lakshmi Jagan B. Clinical model machine learning for gait observation cardiovascular disease diagnosis. Int J Pharm Res 2024;16:3373-8. Available from: http://www.ijpronline.com/ViewArticleDetail.aspx?ID=18315 [Last accessed on 4 Jul 2024].

63. Katragadda T, Srinivas M, Prakash KB, Kumar TP. Heart disease diagnosis using ANN, RNN and CNN. Int J Adv Sci Technol 2020;29:2232-9. Available from: http://sersc.org/journals/index.php/IJAST/article/view/8427 [Last accessed on 4 Jul 2024].

64. Siva Kumar P, Anbazhaghan N, Razia S, Sivani M, Pravalika S, Harshini AS. Prediction of cardiovascular disease using classification techniques with high accuracy. J Adv Res Dyn Control Syst 2020;12:1134-9. Available from: https://www.jardcs.org/abstract.php?id=4370 [Last accessed on 4 Jul 2024].

65. Velliangiri S, Pandiaraj S, Joseph S IT, Muthubalaji S. Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis. Concurr Comput 2022;34:e7099.

66. Noi PT, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2017;18:18.

67. Tzotsos A, Argialas D. Support vector machine classification for object-based image analysis. In: Blaschke T, Lang S, Hay GJ, editors. Object-based image analysis. Berlin Heidelberg: Springer; 2008. pp. 663-77.

68. Ghezelbash R, Maghsoudi A, Carranza EJM. Performance evaluation of RBF- and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of S-A multifractal model and mineralization controls. Earth Sci Inform 2019;12:277-93.

69. Zhou F, Huang S, Xing Y. Deep semantic dictionary learning for multi-label image classification. In: the thirty-fifth AAAI conference on artificial intelligence (AAAI-21). Available from: https://cdn.aaai.org/ojs/16472/16472-13-19966-1-2-20210518.pdf [Last accessed on 4 Jul 2024].

70. ECHO. 2022. Available from: https://www.kaggle.com/c/echo2022 [Last accessed on 4 Jul 2024].

71. EchoNet-dynamic. Available from: https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a [Last accessed on 4 Jul 2024].

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/