REFERENCES

1. Bergami M, Scarpone M, Bugiardini R, Cenko E, Manfrini O. Sex beyond cardiovascular risk factors and clinical biomarkers of cardiovascular disease. Rev Cardiovasc Med 2022;23:19.

2. Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018;39:1073-84.

3. Westerlund AM, Hawe JS, Heinig M, Schunkert H. Risk prediction of cardiovascular events by exploration of molecular data with explainable artificial intelligence. Int J Mol Sci 2021;22:10291.

4. Bivard A, Churilov L, Parsons M. Artificial intelligence for decision support in acute stroke - current roles and potential. Nat Rev Neurol 2020;16:575-85.

5. Reel PS, Reel S, van Kralingen JC, et al. Machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study. EBioMedicine 2022;84:104276.

6. Poss AM, Maschek JA, Cox JE, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Invest 2020;130:1363-76.

7. de Gonzalo-Calvo D, Martínez-Camblor P, Bär C, et al. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics 2020;10:8665-76.

8. Schlant RC, Adolph RJ, DiMarco JP, et al. Guidelines for electrocardiography. A report of the American college of cardiology/American heart association task force on assessment of diagnostic and therapeutic cardiovascular procedures (committee on electrocardiography). Circulation 1992;85:1221-8.

9. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019;25:65-9.

10. Shah AP, Rubin SA. Errors in the computerized electrocardiogram interpretation of cardiac rhythm. J Electrocardiol 2007;40:385-90.

11. Guglin ME, Thatai D. Common errors in computer electrocardiogram interpretation. Int J Cardiol 2006;106:232-7.

12. Poon K, Okin PM, Kligfield P. Diagnostic performance of a computer-based ECG rhythm algorithm. J Electrocardiol 2005;38:235-8.

13. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44.

14. Smith SW, Rapin J, Li J, et al. A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation. Int J Cardiol Heart Vasc 2019;25:100423.

15. Liu CW, Wu FH, Hu YL, et al. Left ventricular hypertrophy detection using electrocardiographic signal. Sci Rep 2023;13:2556.

16. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 2019;25:70-4.

17. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 2019;394:861-7.

18. Raghunath S, Ulloa Cerna AE, Jing L, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med 2020;26:886-91.

19. Poungponsri S, Yu XH. An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing 2013;117:206-13.

20. Jadhav SM, Nalbalwar SL, Ghatol A. Artificial neural network based cardiac arrhythmia classification using ECG signal data. In: 2010 international conference on electronics and information engineering; 1-3 Aug 2010; Kyoto, Japan.

21. Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389-96.

22. Haseena HH, Mathew AT, Paul JK. Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification. J Med Syst 2011;35:179-88.

23. Sayantan G, Kien PT, Kadambari KV. Classification of ECG beats using deep belief network and active learning. Med Biol Eng Comput 2018;56:1887-98.

24. Tateno K, Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and deltaRR intervals. Med Biol Eng Comput 2001;39:664-71.

25. Dash S, Chon KH, Lu S, Raeder EA. Automatic real time detection of atrial fibrillation. Ann Biomed Eng 2009;37:1701-9.

26. Huang C, Ye S, Chen H, Li D, He F, Tu Y. A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans Biomed Eng 2011;58:1113-9.

27. Babaeizadeh S, Gregg RE, Helfenbein ED, Lindauer JM, Zhou SH. Improvements in atrial fibrillation detection for real-time monitoring. J Electrocardiol 2009;42:522-6.

28. Jiang K, Huang C, Ye SM, Chen H. High accuracy in automatic detection of atrial fibrillation for Holter monitoring. J Zhejiang Univ Sci B 2012;13:751-6.

29. Xia Y, Wulan N, Wang K, Zhang H. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med 2018;93:84-92.

30. Acharya UR, Fujita H, Oh SL, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comput Syst 2018;79:952-9.

31. Sabut S, Pandey O, Mishra BSP, Mohanty M. Detection of ventricular arrhythmia using hybrid time-frequency-based features and deep neural network. Phys Eng Sci Med 2021;44:135-45.

32. Chang KC, Hsieh PH, Wu MY, et al. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram. Eur Heart J Digit Health 2021;2:299-310.

33. Zheng J, Fu G, Struppa D, et al. A high precision machine learning-enabled system for predicting idiopathic ventricular arrhythmia origins. Front Cardiovasc Med 2022;9:809027.

34. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke. Circulation 2021;143:1287-98.

35. Hsu CY, Liu PY, Liu SH, Kwon Y, Lavie CJ, Lin GM. Machine learning for electrocardiographic features to identify left atrial enlargement in young adults: CHIEF heart study. Front Cardiovasc Med 2022;9:840585.

36. Zhao X, Huang G, Wu L, et al. Deep learning assessment of left ventricular hypertrophy based on electrocardiogram. Front Cardiovasc Med 2022;9:952089.

37. Grogan M, Lopez-Jimenez F, Cohen-Shelly M, et al. Artificial intelligence-enhanced electrocardiogram for the early detection of cardiac amyloidosis. Mayo Clin Proc 2021;96:2768-78.

38. Kwon JM, Kim KH, Jeon KH, et al. Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification. Korean Circ J 2019;49:629-39.

39. McDonagh TA, McDonald K, Maisel AS. Screening for asymptomatic left ventricular dysfunction using B-type natriuretic peptide. Congest Heart Fail 2008;14:5-8.

40. Dey M, Omar N, Ullah MA. Temporal feature-based classification into myocardial infarction and other CVDs merging CNN and Bi-LSTM from ECG signal. IEEE Sensors J 2021;21:21688-95.

41. Jahmunah V, Ng EYK, San TR, Acharya UR. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput Biol Med 2021;134:104457.

42. Yadav SS, More SB, Jadhav SM, Sutar SR. Convolutional neural networks based diagnosis of myocardial infarction in electrocardiograms. In: 2021 international conference on computing, communication, and intelligent systems (ICCCIS); 19-20 Feb 2021; Greater Noida, India. pp. 581-6.

43. Hasbullah S, Mohd Zahid MS, Mandala S. Detection of myocardial infarction using hybrid models of convolutional neural network and recurrent neural network. BioMedInformatics 2023;3:478-92.

44. Xiong P, Xue Y, Zhang J, et al. Localization of myocardial infarction with multi-lead ECG based on DenseNet. Comput Meth Prog Bio 2021;203:106024.

45. Ibrahim L, Mesinovic M, Yang KW, Eid MA. Explainable prediction of acute myocardial infarction using machine learning and shapley values. IEEE Access 2020;8:210410-7.

46. Gustafsson S, Gedon D, Lampa E, et al. Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients. Sci Rep 2022;12:19615.

47. Fiorina L, Maupain C, Gardella C, et al. Evaluation of an ambulatory ECG analysis platform using deep neural networks in routine clinical practice. J Am Heart Assoc 2022;11:e026196.

48. Guo SL, Han LN, Liu HW, Si QJ, Kong DF, Guo FS. The future of remote ECG monitoring systems. J Geriatr Cardiol 2016;13:528-30.

49. Abdou A, Krishnan S. Horizons in single-lead ECG analysis from devices to data. Front Signal Process 2022;2:866047.

50. Mannhart D, Lischer M, Knecht S, et al. Clinical validation of 5 direct-to-consumer wearable smart devices to detect atrial fibrillation: BASEL wearable study. JACC Clin Electrocardiol 2023;9:232-42.

51. Kim M, Kang Y, You SC, et al. Artificial intelligence predicts clinically relevant atrial high-rate episodes in patients with cardiac implantable electronic devices. Sci Rep 2022;12:37.

52. Shakibfar S, Krause O, Lund-Andersen C, et al. Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning. Europace 2019;21:268-74.

53. Cheng Y, Ousdigian KT, Sarkar S, Koehler J, Cho YK, Kloosterman EM. B-PO04-036 innovative artificial intelligence application reduces false pause alerts while maintaining perfect true pause alert sensitivity for insertable cardiac monitors. Heart Rhythm 2021;18:S293-4.

54. Radtke AP, Ousdigian KT, Haddad TD, Koehler JL, Colombowala IK. B-AB24-04 artificial intelligence enables dramatic reduction of false atrial fibrillation alerts from insertable cardiac monitors. Heart Rhythm 2021;18:S47.

55. McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 2003;50:289-94.

56. Li Z, Ma M. ECG modeling with DFG. In: 2005 IEEE engineering in medicine and biology 27th annual conference 2005; 17-18 Jan 2006; Shanghai, China.

57. Sameni R, Clifford GD, Jutten C, Shamsollahi MB. Multichannel ECG and noise modeling: application to maternal and fetal ECG signals. EURASIP J Adv Signal Process 2007;2007:043407.

58. Clifford GD, Nemati S, Sameni R. An artificial vector model for generating abnormal electrocardiographic rhythms. Physiol Meas 2010;31:595-609.

59. Roonizi EK, Sameni R. Morphological modeling of cardiac signals based on signal decomposition. Comput Biol Med 2013;43:1453-61.

60. Wulan N, Wang W, Sun P, Wang K, Xia Y, Zhang H. Generating electrocardiogram signals by deep learning. Neurocomputing 2020;404:122-36.

61. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff 2008;27:1491-502.

62. Lim LJ, Tison GH, Delling FN. Artificial intelligence in cardiovascular imaging. Methodist Debakey Cardiovasc J 2020;16:138-45.

63. Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc Imag 2020;13:374-81.

64. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med 2018;1:6.

65. Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 2018;138:1623-35.

66. Tabassian M, Alessandrini M, Herbots L, et al. Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. Int J Cardiovasc Imag 2017;33:1159-67.

67. Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imag 2016;9:e004330.

68. Heitzinger G, Spinka G, Koschatko S, et al. A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation. Eur Heart J Cardiovasc Imag 2023;24:588-97.

69. Lei J, Wang YG, Bhatta L, et al. Ventricular geometry-regularized QRSd predicts cardiac resynchronization therapy response: machine learning from crosstalk between electrocardiography and echocardiography. Int J Cardiovasc Imag 2019;35:1221-9.

70. Fotaki A, Puyol-Antón E, Chiribiri A, Botnar R, Pushparajah K, Prieto C. Artificial intelligence in cardiac MRI: is clinical adoption forthcoming? Front Cardiovasc Med 2021;8:818765.

71. Chen C, Bai W, Davies RH, et al. Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front Cardiovasc Med 2020;7:105.

72. He Y, Qin W, Wu Y, et al. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. J Xray Sci Technol 2020;28:541-53.

73. Bhuva AN, Bai W, Lau C, et al. A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis. Circ Cardiovasc Imag 2019;12:e009214.

74. Augusto JB, Davies RH, Bhuva AN, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. Lancet Digit Health 2021;3:e20-8.

75. Eichhorn C, Greulich S, Bucciarelli-Ducci C, Sznitman R, Kwong RY, Gräni C. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis. JACC Cardiovasc Imag 2022;15:1325-38.

76. Fahmy AS, Rausch J, Neisius U, et al. Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc Imag 2018;11:1917-8.

77. Fahmy AS, El-Rewaidy H, Nezafat M, Nakamori S, Nezafat R. Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks. J Cardiovasc Magn Reson 2019;21:7.

78. Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imag 2019;12:1946-54.

79. Wang J, Yang F, Liu W, et al. Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy. J Magn Reson Imag 2020;52:1714-21.

80. Xue H, Artico J, Davies RH, et al. Automated in-line artificial intelligence measured global longitudinal shortening and mitral annular plane systolic excursion: reproducibility and prognostic significance. J Am Heart Assoc 2022;11:e023849.

81. Coenen A, Kim YH, Kruk M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ Cardiovasc Imag 2018;11:e007217.

82. Kang D, Dey D, Slomka PJ, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imag 2015;2:014003.

83. Liao S, Mo Z, Zeng M, et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction. Cell Rep Med 2023;4:101119.

84. Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 2017;38:500-7.

85. van Rosendael AR, Maliakal G, Kolli KK, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr 2018;12:204-9.

86. Li T, Zhang M, Qi W, Asma E, Qi J. Motion correction of respiratory-gated PET images using deep learning based image registration framework. Phys Med Biol 2020;65:155003.

87. Nakajima K, Kudo T, Nakata T, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imag 2017;44:2280-9.

88. Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol 2013;20:553-62.

89. Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imag 2018;11:1654-63.

90. Betancur J, Otaki Y, Motwani M, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imag 2018;11:1000-9.

91. Arsanjani R, Dey D, Khachatryan T, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol 2015;22:877-84.

92. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation 2020;141:e139-596.

93. Maragna R, Giacari CM, Guglielmo M, et al. Artificial intelligence based multimodality imaging: a new frontier in coronary artery disease management. Front Cardiovasc Med 2021;8:736223.

94. Acharya UR, Fujita H, Adam M, et al. Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Inf Sci 2017;377:17-29.

95. Han C, Shi L. ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Comput Meth Prog Bio 2020;185:105138.

96. Lih OS, Jahmunah V, San TR, et al. Comprehensive electrocardiographic diagnosis based on deep learning. Artif Intell Med 2020;103:101789.

97. McCarthy CP, Neumann JT, Michelhaugh SA, et al. Derivation and external validation of a high-sensitivity cardiac troponin-based proteomic model to predict the presence of obstructive coronary artery disease. J Am Heart Assoc 2020;9:e017221.

98. Sabatino J, De Rosa S, Leo I, et al. Non-invasive myocardial work is reduced during transient acute coronary occlusion. PLoS One 2020;15:e0244397.

99. Sabatino J, De Rosa S, Leo I, et al. Prediction of significant coronary artery disease through advanced echocardiography: role of non-invasive myocardial work. Front Cardiovasc Med 2021;8:719603.

100. Raghavendra U, En Wei JK, Gudigar A, et al. Automated diagnosis and assessment of cardiac structural alteration in hypertension ultrasound images. Contrast Media Mol Imag 2022;2022:5616939.

101. Vidya KS, Ng EYK, Acharya UR, Chou SM, Tan RS, Ghista DN. Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study. Comput Biol Med 2015;62:86-93.

102. Glessgen CG, Boulougouri M, Vallée JP, et al. Artificial intelligence-based opportunistic detection of coronary artery stenosis on aortic computed tomography angiography in emergency department patients with acute chest pain. Eur Heart J Open 2023;3:oead088.

103. Knott KD, Seraphim A, Augusto JB, et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping. Circulation 2020;141:1282-91.

104. Farooq V, van Klaveren D, Steyerberg EW, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet 2013;381:639-50.

105. De Rosa S, Polimeni A, De Velli G, et al. Reliability of instantaneous wave-free ratio (iFR) for the evaluation of left main coronary artery lesions. J Clin Med 2019;8:1143.

106. De Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave-free ratio: comparison with fractional flow reserve. Circ Cardiovasc Interv 2018;11:e004613.

107. SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018;379:924-33.

108. Douglas PS, De Bruyne B, Pontone G, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol 2016;68:435-45.

109. Tesche C, Gray HN. Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve. J Thorac Imag 2020;35:S66-71.

110. Celeng C, Leiner T, Maurovich-Horvat P, et al. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis. JACC Cardiovasc Imag 2019;12:1316-25.

111. Qiao HY, Tang CX, Schoepf UJ, et al. Impact of machine learning-based coronary computed tomography angiography fractional flow reserve on treatment decisions and clinical outcomes in patients with suspected coronary artery disease. Eur Radiol 2020;30:5841-51.

112. Curzen N, Nicholas Z, Stuart B, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. Eur Heart J 2021;42:3844-52.

113. Yang J, Shan D, Wang X, et al. On-site computed tomography-derived fractional flow reserve to guide management of patients with stable coronary artery disease: the TARGET randomized trial. Circulation 2023;147:1369-81.

114. Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart J Cardiovasc Imag 2020;21:437-45.

115. Min HS, Yoo JH, Kang SJ, et al. Detection of optical coherence tomography-defined thin-cap fibroatheroma in the coronary artery using deep learning. EuroIntervention 2020;16:404-12.

116. Cho H, Kang SJ, Min HS, et al. Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease. Atherosclerosis 2021;324:69-75.

117. Cook CM, Warisawa T, Howard JP, et al. Algorithmic versus expert human interpretation of instantaneous wave-free ratio coronary pressure-wire pull back data. JACC Cardiovasc Interv 2019;12:1315-24.

118. Miyoshi T, Higaki A, Kawakami H, Yamaguchi O. Automated interpretation of the coronary angioscopy with deep convolutional neural networks. Open Heart 2020;7:e001177.

119. Serruys PW, Chichareon P, Modolo R, et al. The SYNTAX score on its way out or … towards artificial intelligence: part I. EuroIntervention 2020;16:44-59.

120. Serruys PW, Chichareon P, Modolo R, et al. The SYNTAX score on its way out or … towards artificial intelligence: part II. EuroIntervention 2020;16:60-75.

121. Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018;391:572-80.

122. 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet 2018;392:1789-858.

123. Roger VL. Epidemiology of heart failure. Circ Res 2013;113:646-59.

124. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007;93:1137-46.

125. Smeets M, Vaes B, Mamouris P, et al. Burden of heart failure in Flemish general practices: a registry-based study in the Intego database. BMJ Open 2019;9:e022972.

126. Gerber Y, Weston SA, Redfield MM, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med 2015;175:996-1004.

127. Boccuto F, De Rosa S, Torella D, Veltri P, Guzzi PH. Will artificial intelligence provide answers to current gaps and needs in chronic heart failure? Appl Sci 2023;13:7663.

128. Lindholm D, Fukaya E, Leeper NJ, Ingelsson E. Bioimpedance and new-onset heart failure: a longitudinal study of >500,000 individuals from the general population. J Am Heart Assoc 2018;7:e008970.

129. Yang G, Ren Y, Pan Q, et al. A heart failure diagnosis model based on support vector machine. In 2010 3rd international conference on biomedical engineering and informatics; 16-18 Oct 2010; Yantai, China.

130. Gharehchopogh SF, Khalifehlou ZA. Neural network application in diagnosis of patient: a case study. In International Conference on Computer Networks and Information Technology; 11-13 Jul 2011; Abbottabad, Pakistan.

131. Aljaaf AJ, Al-Jumeily D, Hussain AJ, Dawson T, Fergus P, Al-Jumaily M. Predicting the likelihood of heart failure with a multi level risk assessment using decision tree. In: 2015 third international conference on technological advances in electrical, electronics and computer engineering (TAEECE); 29 April 2015-01 May 2015; Beirut, Lebanon.

132. Zheng Y, Guo X, Qin J, Xiao S. Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Meth Prog Bio 2015;122:372-83.

133. Gharehbaghi A, Lindén M, Babic A. An artificial intelligent-based model for detecting systolic pathological patterns of phonocardiogram based on time-growing neural network. Appl Soft Comput 2019;83:105615.

134. Segar MW, Vaduganathan M, Patel KV, et al. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 2019;42:2298-306.

135. Segar MW, Jaeger BC, Patel KV, et al. Development and validation of machine learning-based race-specific models to predict 10-year risk of heart failure: a multicohort analysis. Circulation 2021;143:2370-83.

136. Morrill J, Qirko K, Kelly J, et al. A machine learning methodology for identification and triage of heart failure exacerbations. J Cardiovasc Transl Res 2022;15:103-15.

137. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 2015;131:269-79.

138. Kao DP, Lewsey JD, Anand IS, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail 2015;17:925-35.

139. Gu J, Pan JA, Lin H, Zhang JF, Wang CQ. Characteristics, prognosis and treatment response in distinct phenogroups of heart failure with preserved ejection fraction. Int J Cardiol 2021;323:148-54.

140. Segar MW, Patel KV, Ayers C, et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail 2020;22:148-58.

141. Hedman ÅK, Hage C, Sharma A, et al. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 2020;106:342-9.

142. Schrub F, Oger E, Bidaut A, et al. Heart failure with preserved ejection fraction: a clustering approach to a heterogenous syndrome. Arch Cardiovasc Dis 2020;113:381-90.

143. Gevaert AB, Tibebu S, Mamas MA, et al. Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes. ESC Heart Fail 2021;8:2741-54.

144. Kwon JM, Kim KH, Jeon KH, et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS One 2019;14:e0219302.

145. Peng S, Huang J, Liu X, et al. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: a retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Front Cardiovasc Med 2022;9:994359.

146. Li J, Liu S, Hu Y, Zhu L, Mao Y, Liu J. Predicting mortality in intensive care unit patients with heart failure using an interpretable machine learning model: retrospective cohort study. J Med Internet Res 2022;24:e38082.

147. Yang B, Zhu Y, Lu X, Shen C. A Novel composite indicator of predicting mortality risk for heart failure patients with diabetes admitted to intensive care unit based on machine learning. Front Endocrinol 2022;13:917838.

148. Karwath A, Bunting KV, Gill SK, et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis. Lancet 2021;398:1427-35.

149. Cikes M, Sanchez-Martinez S, Claggett B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 2019;21:74-85.

150. Zheng Y, Lu X, Georgescu B, et al. Robust object detection using marginal space learning and ranking-based multi-detector aggregation: application to left ventricle detection in 2D MRI images. In: 2009 IEEE conference on computer vision and pattern recognition; 20-25 Jun 2009; Miami, FL, USA.

151. Lu X, Jolly MP, Georgescu B, et al. Automatic view planning for cardiac MRI acquisition. In: Fichtinger G, Martel A, Peters T, editors. Medical image computing and computer-assisted intervention - MICCAI 2011. Berlin, Heidelberg: Springer; 2011. pp. 479-86.

152. Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 2016;30:108-19.

153. Orwat S, Arvanitaki A, Diller GP. A new approach to modelling in adult congenital heart disease: artificial intelligence. Rev Esp Cardiol 2021;74:573-5.

154. Hyun CM, Kim HP, Lee SM, et al. Deep learning for undersampled MRI reconstruction. Phys Med Biol 2018;63:135007.

155. Pace DF, Dalca AV, Geva T, Powell AJ, Moghari MH, Golland P. Interactive whole-heart segmentation in congenital heart disease. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 80-8.

156. Arafati A, Hu P, Finn JP, et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc Diagn Ther 2019;9:S310-25.

157. Diller GP, Vahle J, Radke R, et al. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease. BMC Med Imag 2020;20:113.

158. Pace DF, Dalca AV, Brosch T, et al. Iterative segmentation from limited training data: applications to congenital heart disease. In: Stoyanov D, Taylor Z, Carneiro G, et al. editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. pp. 334-42.

159. Wesołowski S, Lemmon G, Hernandez EJ, et al. An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records. PLOS Digit Health 2022;1:e0000004.

160. Diller GP, Kempny A, Babu-Narayan SV, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients. Eur Heart J 2019;40:1069-77.

161. Diller GP, Orwat S, Vahle J, et al. Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart 2020;106:1007-14.

162. Davies R, Babu-Narayan SV. Deep learning in congenital heart disease imaging: hope but not haste. Heart 2020;106:960-1.

163. Diller GP, Lammers AE, Babu-Narayan S, et al. Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms. Int J Cardiovasc Imag 2019;35:2189-96.

164. Chessa M, Van De Bruaene A, Farooqi K, et al. Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an exciting future. Eur Heart J 2022;43:2672-84.

165. Lu XH, Liu A, Fuh SC, et al. Recurrent disease progression networks for modelling risk trajectory of heart failure. PLoS One 2021;16:e0245177.

166. Ishikita A, McIntosh C, Hanneman K, et al. Machine learning for prediction of adverse cardiovascular events in adults with repaired tetralogy of fallot using clinical and cardiovascular magnetic resonance imaging variables. Circ Cardiovasc Imag 2023;16:e015205.

167. Chang Junior J, Binuesa F, Caneo LF, et al. Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: a pilot study. PLoS One 2020;15:e0238199.

168. Bogani R, Theodorou A, Arnaboldi L, Wortham RH. Garbage in, toxic data out: a proposal for ethical artificial intelligence sustainability impact statements. AI Ethics 2022:1-8.

169. Liyanage H, Liaw ST, Jonnagaddala J, et al. Artificial intelligence in primary health care: perceptions, issues, and challenges. Yearb Med Inform 2019;28:41-6.

170. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-10.

171. Tsopra R, Fernandez X, Luchinat C, et al. A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Med Inform Decis Mak 2021;21:274.

172. Ghasemi M, Samadi M, Soleimanian E, Chau KW. A comparative study of black-box and white-box data-driven methods to predict landfill leachate permeability. Environ Monit Assess 2023;195:862.

173. Mey O, Neufeld D. Explainable AI algorithms for vibration data-based fault detection: use case-adadpted methods and critical evaluation. Sensors 2022;22:9037.

174. Noseworthy PA, Attia ZI, Brewer LC, et al. Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ECG analysis. Circ Arrhythm Electrocardiol 2020;13:e007988.

175. De Rosa S, Brida M, Grapsa J, Dos Subira L, Bäck M, Chieffo A. Women in cardiology. Eur Heart J Open 2023;3:oead122.

176. Abrams C. Google’s effort to prevent blindness shows AI challenges. Wall Street J 2019;1:26. Available from: https://www.wsj.com/articles/googles-effort-to-prevent-blindness-hits-roadblock-11548504004 [Last accessed on 25 Apr 2024].

177. Hardesty L. Study finds gender and skin-type bias in commercial artificial-intelligence systems. 2018. Available from: https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212 [Last accessed on 5 Mar 2024].

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/