REFERENCES

1. Jadhav SP, Singh H, Hussain S, et al. Introduction to lung diseases. In: Dua K, Löbenberg R, Malheiros Luzo ÂC, et al. editors. Targeting cellular signalling pathways in lung diseases. Singapore: Springer; 2021. pp. 1-25.

2. Dastidar D, Saha S, Chowdhury M. Porous microspheres: synthesis, characterisation and applications in pharmaceutical & medical fields. Int J Pharm 2018;548:34-48.

3. Borges do Nascimento IJ, O’Mathúna DP, von Groote TC, et al. Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews. BMC Infect Dis 2021;21:525.

4. Lu X, Zhu T, Chen C, Liu Y. Right or left: the role of nanoparticles in pulmonary diseases. Int J Mol Sci 2014;15:17577-600.

5. Hashoul D, Haick H. Sensors for detecting pulmonary diseases from exhaled breath. Eur Respir Rev 2019;28:190011.

6. Duan Y, Shen C, Zhang Y, Luo Y. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Front Oncol 2022;12:1031000.

7. Kanwal M, Ding XJ, Cao Y. Familial risk for lung cancer. Oncol Lett 2017;13:535-42.

8. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008;83:584-94.

9. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671-4.

10. Dastidar D, Ghosh D, Chakrabarti G. Tumour vasculature targeted anti-cancer therapy. Vessel Plus 2020;4:14.

11. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2011;2:1117-33.

12. Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int 2015;2015:549412.

13. Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes 2020;11:1342.

14. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 2007;1:26-41.

15. Huang Y, Cheng Q, Ji JL, et al. Pharmacokinetic behaviors of intravenously administered siRNA in glandular tissues. Theranostics 2016;6:1528-41.

16. Dastidar DG, Das A, Datta S, et al. Paclitaxel-encapsulated core-shell nanoparticle of cetyl alcohol for active targeted delivery through oral route. Nanomedicine 2019;14:2121-50.

17. Basu A, Krishnamurthy S. Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids 2010;2010:1-16.

18. Oh ET, Kim CW, Kim SJ, Lee JS, Hong SS, Park HJ. Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia. Sci Rep 2016;6:27382.

19. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 2010;11:1000-17.

20. Duggirala KB, Lee Y, Lee K. Chronicles of EGFR tyrosine kinase inhibitors: targeting EGFR C797S containing triple mutations. Biomol Ther 2022;30:19-27.

21. Suda K, Mitsudomi T. Successes and limitations of targeted cancer therapy in lung cancer. 2014. pp. 62-77.

22. Basak D, Arrighi S, Darwiche Y, Deb S. Comparison of anticancer drug toxicities: paradigm shift in adverse effect profile. Life 2021;12:48.

23. Shaikh AY, Shih JA. Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 2012;9:117-27.

24. Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 2014;347:159-66.

25. Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012;160:117-34.

26. Numico G, Castiglione F, Granetto C, et al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: a pilot trial. Lung Cancer 2002;35:59-64.

27. Patlakas G, Bouros D, Tsantekidou-Pozova S, Koukourakis MI. Triplet chemotherapy with docetaxel, gemcitabine and liposomal doxorubicin, supported with subcutaneous amifostine and hemopoietic growth factors, in advanced non-small cell lung cancer. Anticancer Res 2005;25:1427-31.

28. Xu C, Wang Y, Guo Z, et al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release 2019;295:153-63.

29. Meenach SA, Kim YJ, Kauffman KJ, Kanthamneni N, Bachelder EM, Ainslie KM. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol Pharm 2012;9:290-8.

30. Ormerod MG, Orr RM, Peacock JH. The role of apoptosis in cell killing by cisplatin: a flow cytometric study. Br J Cancer 1994;69:93-100.

31. Plummer R, Wilson RH, Calvert H, et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 2011;104:593-8.

32. Volovat SR, Ciuleanu TE, Koralewski P, et al. A multicenter, single-arm, basket design, phase II study of NC-6004 plus gemcitabine in patients with advanced unresectable lung, biliary tract, or bladder cancer. Oncotarget 2020;11:3105-17.

33. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020;10:727-42.

34. Liu B, Cao W, Qiao G, et al. Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater 2019;99:307-19.

35. Moro M, Di Paolo D, Milione M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019;308:44-56.

36. Kawashiri T, Inoue M, Mori K, et al. Preclinical and clinical evidence of therapeutic agents for paclitaxel-induced peripheral neuropathy. Int J Mol Sci 2021;22:8733.

37. Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020;7:193.

38. Zhang XP, Chen XJ, Li BZ, et al. Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials 2022;281:121362.

39. Liu J, Chen C, Wei T, et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021;1:21-34.

40. Duman FD, Akkoc Y, Demirci G, et al. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. J Mater Chem B 2019;7:7363-76.

41. Chen H, Li B, Zhang M, et al. Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. Nanoscale 2014;6:12580-90.

42. Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy. Nanomedicine 2019;14:819-34.

43. Yang Y, Wang Z, Peng Y, Ding J, Zhou W. A smart pH-sensitive delivery system for enhanced anticancer efficacy via paclitaxel endosomal escape. Front Pharmacol 2019;10:10.

44. Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart nanotherapeutics and lung cancer. Pharmaceutics 2021;13:1972.

45. Chen Q, Shen Y, Zheng J. A review of cystic fibrosis: basic and clinical aspects. Animal Model Exp Med 2021;4:220-32.

46. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245:1066-73.

47. Alton EWFW, Armstrong DK, Ashby D, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 2015;3:684-91.

48. Becker KA, Riethmüller J, Zhang Y, Gulbins E. The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis. Open Respir Med J 2010;4:39-47.

49. Corvol H, Thompson KE, Tabary O, le Rouzic P, Guillot L. Translating the genetics of cystic fibrosis to personalized medicine. Transl Res 2016;168:40-9.

50. Somaraju URR, Solis-Moya A. Pancreatic enzyme replacement therapy for people with cystic fibrosis. Cochrane Database Syst Rev 2020;8:CD008227.

51. Yang C, Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev 2021;3:CD001127.

52. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. Surv Anesthesiol 2007;51:7-8.

53. Brodlie M, Haq IJ, Roberts K, Elborn JS. Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med 2015;7:101.

54. van Gool K, Norman R, Delatycki MB, Hall J, Massie J. Understanding the costs of care for cystic fibrosis: an analysis by age and health state. Value Health 2013;16:345-55.

55. Naughton CA. Patient-centered communication. Pharmacy 2018;6:18.

56. Heffer RW, Worchel-Prevatt F, Rae WA, et al. The effects of oral versus written instructions on parents’ recall and satisfaction after pediatric appointments. J Dev Behav Pediatr 1997;18:377-82.

57. Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 2017;15:84.

58. Suk JS, Lai SK, Wang YY, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009;30:2591-7.

59. Craparo EF, Porsio B, Sardo C, Giammona G, Cavallaro G. Pegylated Polyaspartamide-polylactide-based nanoparticles penetrating cystic fibrosis artificial mucus. Biomacromolecules 2016;17:767-77.

60. Liu M, Zhang J, Shan W, Huang Y. Developments of mucus penetrating nanoparticles. Asian J Pharm Sci 2015;10:275-82.

61. Suk JS, Lai SK, Boylan NJ, Dawson MR, Boyle MP, Hanes J. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 2011;6:365-75.

62. Suk JS, Boylan NJ, Trehan K, et al. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol Ther 2011;19:1981-9.

63. Moreno-Sastre M, Pastor M, Esquisabel A, et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 2016;498:263-73.

64. Juntke J, Murgia X, Günday Türeli N, et al. Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021;11:1752-65.

65. Robinson E, MacDonald KD, Slaughter K, et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther 2018;26:2034-46.

66. Koch G, Nadal-jimenez P, Cool RH, Quax WJ. Assessing pseudomonas virulence with nonmammalian host: galleria mellonella. In: Filloux A, Ramos J, editors. Pseudomonas methods and protocols. New York: Springer; 2014. pp. 681-8.

67. Conte G, Costabile G, Baldassi D, et al. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in siRNA delivery to the lungs: does PEGylation make the difference? ACS Appl Mater Interfaces 2022;14:7565-78.

68. Guan S, Munder A, Hedtfeld S, et al. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat Nanotechnol 2019;14:287-97.

69. Leal J, Liu X, Peng X, et al. A combinatorial biomolecular strategy to identify peptides for improved transport across the sputum of cystic fibrosis patients and the underlying epithelia. bioRxiv 2019.

70. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol 2013;190:3354-62.

71. Tarbox AK, Swaroop M. Pulmonary embolism. Int J Crit Illn Inj Sci 2013;3:69-72.

72. Ouriel K, Green RM, Greenberg RK, Clair DG. The anatomy of deep venous thrombosis of the lower extremity. J Vasc Surg 2000;31:895-900.

73. Mclachlin AD, Mclachlin JA, Jory TA, Rawling EG. Venous stasis in the lower extremities. Ann Surg 1960;152:678-85.

74. Stein PD, Matta F, Musani MH, Diaczok B. Silent pulmonary embolism in patients with deep venous thrombosis: a systematic review. Am J Med 2010;123:426-31.

75. Leidi A, Bex S, Righini M, Berner A, Grosgurin O, Marti C. Risk stratification in patients with acute pulmonary embolism: current evidence and perspectives. J Clin Med 2022;11:2533.

76. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999;353:1386-9.

77. Mullan CW, Newman J, Geib M, et al. Modern treatment trends and outcomes of pulmonary embolism with and without hemodynamic significance. Ann Thorac Surg 2020;110:1534-40.

78. Licha CR, McCurdy CM, Maldonado SM, Lee LS. Current management of acute pulmonary embolism. Ann Thorac Cardiovasc Surg 2020;26:65-71.

79. Carlon TA, Goldman DT, Marinelli BS, et al. Contemporary management of acute pulmonary embolism: evolution of catheter-based therapy. Radiographics 2022;42:1861-80.

80. Wang Y, Xu X, Zhao X, Yin Z. Functionalized polymeric hybrid micelles as an efficient nanotheranostic agent for thrombus imaging and thrombolysis. Acta Biomater 2021;122:278-90.

81. Koudelka S, Mikulik R, Mašek J, et al. Liposomal nanocarriers for plasminogen activators. J Control Release 2016;227:45-57.

82. Nelson CE, Kintzing JR, Hanna A, Shannon JM, Gupta MK, Duvall CL. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 2013;7:8870-80.

83. Piazza G, Hohlfelder B, Jaff MR, et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc Interv 2015;8:1382-92.

84. Niu Y, Tan H, Li X, et al. Protein-carbon dot nanohybrid-based early blood-brain barrier damage theranostics. ACS Appl Mater Interfaces 2020;12:3445-52.

85. Lee TY, Jayakumar T, Thanasekaran P, et al. Carbon dot nanoparticles exert inhibitory effects on human platelets and reduce mortality in mice with acute pulmonary thromboembolism. Nanomaterials 2020;10:1254.

86. Goel L, Wu H, Zhang B, et al. Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsyst Nanoeng 2021;7:3.

87. Xu J, Zhou J, Zhong Y, et al. Phase transition nanoparticles as multimodality contrast agents for the detection of thrombi and for targeting thrombolysis: in vitro and in vivo experiments. ACS Appl Mater Interfaces 2017;9:42525-35.

88. Zhang D, Zhang C, Lan S, et al. Near-infrared light activated thermosensitive ion channel to remotely control transgene system for thrombolysis therapy. Small 2019;15:e1901176.

89. Chang LH, Chuang EY, Cheng TM, et al. Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent. Acta Biomater 2021;134:686-701.

90. Zhong Y, Zhang Y, Xu J, et al. Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy. ACS Nano 2019;13:3387-403.

91. Wang X, Gkanatsas Y, Palasubramaniam J, et al. Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics 2016;6:726-38.

92. Zhao Z, Li M, Zeng J, et al. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022;12:214-45.

93. Zhao Y, Jiang Y, Lv W, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release 2016;233:64-71.

94. Bai S, Gupta V, Ahsan F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur J Pharm Sci 2009;38:165-71.

95. Bush A. Pathophysiological mechanisms of asthma. Front Pediatr 2019;7:68.

96. Gillissen A, Paparoupa M. Inflammation and infections in asthma. Clin Respir J 2015;9:257-69.

97. Fröhlich E, Mercuri A, Wu S, Salar-Behzadi S. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front Pharmacol 2016;7:181.

98. Murphy DM, O’Byrne PM. Recent advances in the pathophysiology of asthma. Chest 2010;137:1417-26.

99. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol 2008;8:218-30.

100. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 2008;8:193-204.

101. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med 2012;18:684-92.

102. Papi A, Blasi F, Canonica GW, Morandi L, Richeldi L, Rossi A. Treatment strategies for asthma: reshaping the concept of asthma management. Allergy Asthma Clin Immunol 2020;16:75.

103. Barnes PJ, Adcock IM. Transcription factors and asthma. Eur Respir J 1998;12:221-34.

104. Palmqvist M, Persson G, Lazer L, Rosenborg J, Larsson P, Lötvall J. Inhaled dry-powder formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency. Eur Respir J 1997;10:2484-9.

105. Donnelly JE, Donnelly WJ, Thong YH. Parental perceptions and attitudes toward asthma and its treatment: a controlled study. Soc Sci Med 1987;24:431-7.

106. Ng ZY, Wong JY, Panneerselvam J, et al. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018;172:51-9.

107. Chen X, Huang W, Wong BC, et al. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomed 2012;7:1139-48.

108. Konduri KS, Nandedkar S, Düzgünes N, et al. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 2003;111:321-7.

109. Wang W, Zhu R, Xie Q, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomed 2012;7:3667-77.

110. Lv C, Li H, Cui H, Bi Q, Wang M. Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway. Bioengineered 2021;12:8635-49.

111. Dhayanandamoorthy Y, Antoniraj MG, Kandregula CAB, Kandasamy R. Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: a promising asthma control strategy. Int J Pharm 2020;591:119958.

112. Cherk Yong DO, Saker SR, Wadhwa R, et al. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J Drug Deliv Sci Technol 2019;54:101297.

113. Ramelli SC, Comer BS, McLendon JM, et al. Nanoparticle delivery of anti-inflammatory LNA oligonucleotides prevents airway inflammation in a HDM model of asthma. Mol Ther Nucleic Acids 2020;19:1000-14.

114. Paleos CM, Tsiourvas D, Sideratou Z. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol Pharm 2007;4:169-88.

115. Inapagolla R, Guru BR, Kurtoglu YE, et al. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010;399:140-7.

116. Cao M, Zhan M, Wang Z, Wang Z, Li XM, Miao M. Development of an orally bioavailable isoliquiritigenin self-nanoemulsifying drug delivery system to effectively treat ovalbumin-induced asthma. Int J Nanomed 2020;15:8945-61.

117. Casula L, Lai F, Pini E, et al. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics 2021;13:1300.

118. Chawla R, Sahu B, Mishra M, Rani V, Singh R. Intranasal micellar curcumin for the treatment of chronic asthma. J Drug Deliv Sci Technol 2022;67:102922.

119. Choi M, Jeong H, Kim S, Kim M, Lee M, Rhim T. Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles. Nanoscale 2020;12:933-43.

120. Onoue S, Matsui T, Aoki Y, et al. Self-assembled micellar formulation of chafuroside A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Pharm Sci 2012;45:184-9.

121. Dastidar DG, Ghosh D, Ghosh S, Chakrabarti G. Current therapeutic strategies and possible effective drug delivery strategies against COVID-19. Curr Drug Deliv 2023;20:1441-64.

122. Cardot-Leccia N, Hubiche T, Dellamonica J, Burel-Vandenbos F, Passeron T. Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection. Intensive Care Med 2020;46:1777-8.

123. Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: a potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J 2020;34:7253-64.

124. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020;10:102-8.

125. Patel TK, Patel PB, Barvaliya M, Saurabh MK, Bhalla HL, Khosla PP. Efficacy and safety of lopinavir-ritonavir in COVID-19: a systematic review of randomized controlled trials. J Infect Public Health 2021;14:740-8.

126. Zapatero-Belinchón FJ, Moeller R, Lasswitz L, et al. Fluvastatin mitigates SARS-CoV-2 infection in human lung cells. iScience 2021;24:103469.

127. Ghosh D, Ghosh Dastidar D, Roy K, et al. Computational prediction of the molecular mechanism of statin group of drugs against SARS-CoV-2 pathogenesis. Sci Rep 2022;12:6241.

128. Yang CJ, Wei YJ, Chang HL, et al. Remdesivir use in the coronavirus disease 2019 pandemic: a mini-review. J Microbiol Immunol Infect 2021;54:27-36.

129. Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ 2020;369:m1432.

130. Lin C, Wong BCK, Chen H, et al. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 2017;7:1097.

131. Muppidi K, Wang J, Betageri G, Pumerantz AS. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob Agents Chemother 2011;55:4537-42.

132. Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 2021;601:120586.

133. Charelli LE, de Mattos GC, de Jesus Sousa-Batista A, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res 2022;24:12.

134. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83.

135. Li Z, Zhang XQ, Ho W, et al. Lipid-polymer hybrid “particle-in-particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 Vaccines. Adv Funct Mater 2022;32:2204462.

136. Abdel-Bar HM, Abdallah IA, Fayed MAA, et al. Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies. RSC Adv 2021;11:28876-91.

137. Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol 2022;74:103553.

138. Beniwal A, Choudhary H. Rosuvastatin calcium-loaded solid lipid nanoparticles (SLN) using design of experiment approach for oral delivery. Int J Chem Life Sci 2017;6:2029. Available from: https://www.researchgate.net/publication/320731140_Rosuvastatin_calcium-loaded_Solid_Lipid_Nanoparticles_SLN_using_design_of_experiment_approach_for_oral_delivery [Last accessed on 1 June 2023]

139. Zhang Y, Malekjahani A, Udugama BN, et al. Surveilling and tracking COVID-19 patients using a portable quantum dot smartphone device. Nano Lett 2021;21:5209-16.

140. Pang J, Xu F, Aondio G, et al. Efficacy and tolerability of bevacizumab in patients with severe Covid-19. Nat Commun 2021;12:814.

141. Salman BI, Ibrahim AE, El Deeb S, Saraya RE. Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: application to real human plasma. RSC Adv 2022;12:16624-31.

142. Gordon.D. Monovalent recombinant COVID19 vaccine. ID NCT04453852. 2020; Available from: https://clinicaltrials.gov/ [Last accessed on 28 July 2023].

143. Polack FP, Thomas SJ, Kitchin N, et al. C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020;383:2603-15.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/