REFERENCES

1. López-Gallardo E, Cammarata-Scalisi F, Emperador S, et al. Mitochondrial DNA pathogenic mutations in multiple symmetric lipomatosis. Clin Genet 2020;97:731-5.

2. Shanske S, Coku J, Lu J, et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: Evidence from 12 cases. Arch Neurol 2008;65:368-72.

3. Bargiela D, Chinnery PF. Mitochondria in neuroinflammation - multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci Lett 2019;710:132932.

4. Lorenz R, Ahting U, Betzler C, Heimering S, Borggräfe I, Lange-Sperandio B. Homoplasmy of the mitochondrial DNA mutation m.616T>C leads to mitochondrial tubulointerstitial kidney disease and encephalopathia. Nephron 2020;144:156-60.

5. Decoux-Poullot AG, Bannwarth S, Procaccio V, et al. Clinical phenotype of mitochondrial diabetes due to rare mitochondrial DNA mutations. Ann Endocrinol 2020;81:68-77.

6. Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S. The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020;114:104412.

7. Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin Dev Immunol 2012;2012:832464.

8. Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res 2020;126:1297-319.

9. Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2019;16:389-406.

10. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 2019;8:72.

11. Soldatov VO, Malorodova TN, Balamutova TI, Ksenofontov AO, Dovgan AP, Urozhevskaya ZS. Endothelial dysfunction: comparative evaluation of ultrasound dopplerography, laser dopplerflowmetry and direct monitoring of arterial pressure for conducting pharmacological tests in rats. Res Results Pharmacol 2018;4:73-80.

12. Soldatov VO, Malorodova TN, Pokrovskaya TG, et al. Ultrasonic dopplerography for the evaluation of endothelial function in the conduct of pharmacological vascular samples in an experiment. Int J Res Pharm Sci 2018;9:735-40.

13. Puchenkova OA, Nadezhdin SV, Soldatov VO, et al. Study of antiatherosclerotic and endothelioprotective activity of peptide agonists of EPOR/CD131 heteroreceptor. Farm Farmakol 2020;8:100-11.

14. Glanz VY, Sobenin IA, Grechko AV, Yet SF, Orekhov AN. The role of mitochondria in cardiovascular diseases related to atherosclerosis. Front Biosci 2020;12:102-12.

15. Sazonova MA, Sinyov VV, Ryzhkova AI, et al. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis. Oxid Med Cell Longev 2017;2017:6934394.

16. Mercer JR, Cheng KK, Figg N, et al. DNA Damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res 2010;107:1021-31.

17. Quan Y, Xin Y, Tian G, Zhou J, Liu X. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging. Oxid Med Cell Longev 2020;2020:9423593.

18. Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural bioactive compounds as protectors of mitochondrial dysfunction in cardiovascular diseases and aging. Molecules 2019;24:4259.

19. Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 2015;116:1783-99.

20. Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 2019;176:3489-507.

21. Gutierrez-Mariscal FM, De Larriva APA, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J. Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci 2020;21:7870.

22. Sukhorukov VN, Kalmykov VA, Khotina VA, Sinyov VV, Khasanova ZB, Sobenin IA. Approach to edit mitochondrial DNA mutations associated with atherosclerosis. Atherosclerosis 2021;331:70-1.

23. Sukhorukov VN, Kalmykov VA, Khotina VA, et al. Elimination of atherosclerosis related mutation from mitochondrial cytb gene. In proceedings of the 19th international symposium atheroscler, Kyoto, Japan, 24-27 Oct 2021.

24. Sukhorukov VN, Kalmykov VA, Khotina VA, Omelchenko AV, Orekhova VA, Orekhov AN. Mitochondrial DNA CRISPR/Cas9 editing: an approach to establishing the role of mitochondrial mutations in atherogenesis. In proceedings of the 90th European atherosclerosis society congress (EAS2022), Milan, Italy, 22-25 May 2022.

25. Kastaniotis AJ, Autio KJ, Kerätär JM, et al. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862:39-48.

26. Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol 2021;22:54-70.

27. Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 2020;98:139-53.

28. Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res 2018;202:52-68.

29. Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020;1866:165845.

30. Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020;21:e49799.

31. Protasoni M, Zeviani M. Mitochondrial structure and bioenergetics in normal and disease conditions. Int J Mol Sci 2021;22:586.

32. Nicholls TJ, Gustafsson CM. Separating and segregating the human mitochondrial genome. Trends Biochem Sci 2018;43:869-81.

33. Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 2014;56:175-81.

34. Omasanggar R, Yu CY, Ang GY, et al. Mitochondrial DNA mutations in malaysian female breast cancer patients. PLoS One 2020;15:e0233461.

35. Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: a putative role in tissue regeneration. Biology 2020;9:486.

36. Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 2016;85:77-101.

37. Kukat C, Davies KM, Wurm CA, et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci USA 2015;112:11288-93.

38. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 2016;85:133-60.

39. Markin AM, Khotina VA, Zabudskaya XG, et al. Disturbance of mitochondrial dynamics and mitochondrial therapies in atherosclerosis. Life 2021;11:165.

40. Falkenberg M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem 2018;62:287-96.

41. Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 2020;48:11244-58.

42. Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 2018;164:183-93.

43. Mok BY, de Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020;583:631-7.

44. Gu S, Bodai Z, Cowan QT, Komor AC. Base editors: expanding the types of DNA damage products harnessed for genome editing. Gene Genome Ed 2021;1:100005.

45. Kamenisch Y, Fousteri M, Knoch J, et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J Exp Med 2010;207:379-90.

46. Stein A, Kalifa L, Sia EA. Members of the RAD52 epistasis group contribute to mitochondrial homologous recombination and double-strand break repair in saccharomyces cerevisiae. PLoS Genet 2015;11:e1005664.

47. Chesner LN, Essawy M, Warner C, Campbell C. DNA-protein crosslinks are repaired via homologous recombination in mammalian mitochondria. DNA Repair 2021;97:103026.

48. Mbantenkhu M, Wang X, Nardozzi JD, et al. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J Biol Chem 2011;286:42360-70.

49. Yoo BC, Yadav NS, Orozco EM, Sakai H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 2020;8:e8362.

50. Bian WP, Chen YL, Luo JJ, Wang C, Xie SL, Pei DS. Knock-In strategy for editing human and zebrafish mitochondrial DNA using Mito-CRISPR/Cas9 system. ACS Synth Biol 2019;8:621-32.

51. Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018;75:1641-55.

52. Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 2016;27:223-35.

53. Reddy P, Ocampo A, Suzuki K, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 2015;161:459-69.

54. Wang B, Lv X, Wang Y, et al. CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. Sci China Life Sci 2021;64:1463-72.

55. Wisnovsky S, Jean SR, Kelley SO. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat Chem Biol 2016;12:567-73.

56. de Souza-Pinto NC, Mason PA, Hashiguchi K, et al. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009;8:704-19.

57. Mustafa MF, Fakurazi S, Abdullah MA, Maniam S. Pathogenic mitochondria DNA mutations: current detection tools and interventions. Genes 2020;11:192.

58. Myasoedova VA, Di Minno A, Songia P, et al. Sex-specific differences in age-related aortic valve calcium load: A systematic review and meta-analysis. Ageing Res Rev 2020;61:101077.

59. Sazonova M, Shkurat T, Demakova N, et al. Mitochondrial genome sequencing in atherosclerosis: what’s next? Curr Pharm Des 2016;22:390-6.

60. Gonzalez-Freire M, Moore AZ, Peterson CA, et al. Associations of peripheral artery disease with calf skeletal muscle mitochondrial dna heteroplasmy. J Am Heart Assoc 2020;9:e015197.

61. Heidari MM, Mirfakhradini FS, Tayefi F, Ghorbani S, Khatami M, Hadadzadeh M. Novel point mutations in mitochondrial MT-CO2 gene may be risk factors for coronary artery disease. Appl Biochem Biotechnol 2020;191:1326-39.

62. Qin Y, Xue L, Jiang P, et al. Mitochondrial tRNA variants in Chinese subjects with coronary heart disease. J Am Heart Assoc 2014;3:e000437.

63. Matam K, Shaik NA, Aggarwal S, et al. Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients. Mol Genet Genomics 2014;289:533-40.

64. Heidari MM, Derakhshani M, Sedighi F, Foruzan-Nia SK. Mutation analysis of the mitochondrial tRNA genes in Iranian coronary atherosclerosis patients. Iran J Public Health 2017;46:1379-85.

65. Zhu Y, You J, Xu C, Gu X. Associations of mitochondrial DNA 3777-4679 region mutations with maternally inherited essential hypertensive subjects in China. BMC Med Genet 2020;21:105.

66. Vecoli C, Borghini A, Pulignani S, et al. Prognostic value of mitochondrial DNA4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease. Atherosclerosis 2018;276:91-7.

67. Sobenin IA, Salonen JT, Khasanova ZB, et al. Carotid atherosclerosis-related mutations of mitochondrial DNA do not explain the phenotype of metabolic syndrome. Vessel Plus 2019;3:14.

68. Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Changes of mitochondria in atherosclerosis: Possible determinant in the pathogenesis of the disease. Atherosclerosis 2013;227:283-8.

69. Kirichenko TV, Ragino YI, Voevoda MI, et al. Data on association of mitochondrial heteroplasmy with carotid intima-media thickness in subjects from Russian and Kazakh populations. Data Brief 2020;29:105136.

70. Sobenin IA, Myasoedova VA, Kirichenko TV, et al. Profiling of risk of subclinical atherosclerosis: Possible interplay of genetic and environmental factors as the update of conventional approach. Vessel Plus 2019;3:15.

71. Kirichenko TV, Ryzhkova AI, Sinyov VV, et al. Impact of mitochondrial dna mutations on carotid intima-media thickness in the Novosibirsk region. Life 2020;10:160.

72. Sinyov VV, Sazonova MA, Ryzhkova AI, et al. Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations. Vessel Plus 2017;1:145-50.

73. Sazonova MA, Ryzhkova AI, Sinyov VV, et al. Mitochondrial mutations associated with cardiac angina. Vessel Plus 2019;3:8.

74. Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Khasanova ZB, Sobenin IA. MtDNA mutations linked with left ventricular hypertrophy. Vessel Plus 2019;3:5.

75. Sazonova MA, Ryzhkova AI, Sinyov VV, et al. New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations. Vessel Plus 2017;1:182-91.

76. Sazonova MA, Sinyov VV, Barinova VA, et al. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. Biomed Res Int 2015;2015:825468.

77. Sobenin IA, Sazonova MA, Ivanova MM, et al. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One 2012;7:e46573.

78. Sazonova MA, Zhelankin AV, Barinova VA, et al. Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data Brief 2016;7:1570-5.

79. Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a selective target for the treatment of atherosclerosis: role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation. Curr Neuropharmacol 2020;18:1064-75.

80. Gammage PA, Viscomi C, Simard ML, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018;24:1691-5.

81. Gammage PA, Van Haute L, Minczuk M. Engineered mtZFNs for manipulation of human mitochondrial DNA heteroplasmy. Methods Mol Biol 2016;1351:145-62.

82. Yang Y, Wu H, Kang X, et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 2018;9:283-97.

83. Gammage PA, Gaude E, Van Haute L, et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 2016;44:7804-16.

84. Bacman SR, Kauppila JHK, Pereira CV, et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 2018;24:1696-700.

85. Hashimoto M, Bacman SR, Peralta S, et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 2015;23:1592-9.

86. Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation. Sci Rep 2017;7:15557.

87. Pereira CV, Bacman SR, Arguello T, et al. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol Med 2018:10.

88. Zekonyte U, Bacman SR, Smith J, et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021;12:3210.

89. Sazonova MA, Ryzhkova AI, Sinyov VV, et al. Creation of cultures containing mutations linked with cardiovascular diseases using transfection and genome editing. Curr Pharm Des 2019;25:693-9.

90. Hussain SRA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front Genet 2021;12:627050.

91. Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life 2018;70:1233-9.

92. Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016;85:227-64.

93. Antón Z, Mullally G, Ford HC, van der Kamp MW, Szczelkun MD, Lane JD. Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors. J Cell Sci 2020;133:jcs248468.

94. Comte C, Tonin Y, Heckel-Mager AM, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2013;41:418-33.

95. Sazonova MA, Sinyov VV, Ryzhkova AI, et al. Cybrid models of pathological cell processes in different diseases. Oxid Med Cell Longev 2018;2018:4647214.

96. Poursaleh A, Esfandiari G, Beigee FS, Eshghifar N, Najafi M. Isolation of intimal endothelial cells from the human thoracic aorta: study protocol. Med J Islam Repub Iran 2019;33:51.

97. Patel JJ, Srivastava S, Siow RCM. Isolation, culture, and characterization of vascular smooth muscle cells. In: Methods in molecular biology. Humana Press Inc. 2016; pp. 91-105.

98. Orekhov AN, Bobryshev YV. Cell composition of the subendothelial aortic intima and the role of alpha-smooth muscle actin expressing pericyte-like cells and smooth muscle cells in the development of atherosclerosis. In: Muscle cell and tissue. IntechOpen; 2015.

99. Lee H, Lee S, Baek G, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 2021;12:1190.

100. Guo J, Zhang X, Chen X, et al. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 2021;7:78.

101. Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not Be CRISPR-Ized. Trends Genet 2018;34:101-10.

102. Shepherd DL, Hathaway QA, Pinti MV, et al. Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol 2017;110:15-25.

103. Chacinska A, van der Laan M, Mehnert CS, et al. Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol Cell Biol 2010;30:307-18.

104. Bacman SR, Gammage PA, Minczuk M, et al. Manipulation of mitochondrial genes and mtDNA heteroplasmy. In: Pon LA, Schon EA, editors. Methods in cell biology. Mitochondria, 3rd Ed. Academic Press; 2020. pp. 441-87.

105. Zakirov FH, Zhang D, Grechko AV, Wu WK, Poznyak AV, Orekhov AN. Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacol Res Perspect 2020;8:e00584.

106. Katayama T, Kinugawa S, Takada S, et al. A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells. Mitochondrion 2019;49:66-72.

107. Yamada Y, Akita H, Kamiya H, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 2008;1778:423-32.

108. Ishikawa T, Somiya K, Munechika R, Harashima H, Yamada Y. Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. J Control Release 2018;274:109-17.

109. Sinha S, Villarreal D, Shim EY, Lee SE. Risky business: Microhomology-mediated end joining. Mutat Res 2016;788:17-24.

110. Murugan K, Seetharam AS, Severin AJ, Sashital DG. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 2020;295:5538-53.

111. Mok BY, Kotrys AV, Raguram A, Huang TP, Mootha VK, Liu DR. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022;40:1378-87.

112. Xiang G, Zhang X, An C, Cheng C, Wang H. Temperature effect on CRISPR-Cas9 mediated genome editing. J Genet Genomics 2017;44:199-205.

113. Chrétien D, Bénit P, Ha HH, et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol 2018;16:e2003992.

114. Mougiakos I, Mohanraju P, Bosma EF, et al. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun 2017;8:1647.

115. Loutre R, Heckel AM, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS One 2018;13:e0199258.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/