REFERENCES
3. Vanhoutte PM, Corcaud S, de Montrion C. Venous disease: from pathophysiology to quality of life. Angiology 1997;48:559-67.
4. Meissner MH, Gloviczki P, Bergan J, et al. Primary chronic venous disorders. J Vasc Surg 2007;46 Suppl S:54S-67S.
5. Hauge M, Gundersen J. Genetics of varicose veins of the lower extremities. Hum Hered 1969;19:573-80.
6. Matousek V, Prerovský I. A contribution to the problem of the inheritance of primary varicose veins. Hum Hered 1974;24:225-35.
7. Cornu-Thenard A, Boivin P, Baud JM, De Vincenzi I, Carpentier PH. Importance of the familial factor in varicose disease. Clinical study of 134 families. J Dermatol Surg Oncol 1994;20:318-26.
8. Guo Q, Guo C. . Genetic analysis of varicose vein of lower extremities. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 1998;15:221-3. (in Chinese)
9. Serra R, Buffone G, de Franciscis A, et al. A genetic study of chronic venous insufficiency. Ann Vasc Surg 2012;26:636-42.
10. Pistorius MA. Chronic venous insufficiency: the genetic influence. Angiology 2003;54 Suppl 1:S5-12.
11. Krysa J, Jones GT, van Rij AM. Evidence for a genetic role in varicose veins and chronic venous insufficiency. Phlebology 2012;27:329-35.
12. Smetanina MA, Shadrina AS, Zolotukhin IA, Filipenko MI. The genetic base of chronic venous disease: a review of modern concepts. Flebol 2016;10:199. (in Russian).
13. Shadrina AS, Smetanina MA, Sevost'ianova KS, et al. Polymorphic variants rs13155212 (T/C) and rs7704267 (G/C) in the AGGF1 gene and risk of varicose veins of the lower extremities in the population of ethnic Russians. Bull Exp Biol Med 2016;161:698-702.
14. Shadrina AS, Sevost'ianova KS, Shevela AI, et al. Polymorphisms in the MTHFR and MTR genes and the risk of varicose veins in ethnical Russians. Biomarkers 2016;21:619-24.
15. Shadrina AS, Smetanina MA, Sevost'yanova KS, et al. Polymorphism of matrix metalloproteinases genes MMP1, MMP2, MMP3, and MMP7 and the risk of varicose veins of lower extremities. Bull Exp Biol Med 2017;163:650-4.
16. Sokolova EA, Shadrina AS, Sevost'ianova KS, et al. HFE p.C282Y gene variant is associated with varicose veins in Russian population. Clin Exp Med 2016;16:463-70.
17. Shadrina AS, Smetanina MA, Sokolova EA, et al. Association of polymorphisms near the FOXC2 gene with the risk of varicose veins in ethnic Russians. Phlebology 2016;31:640-8.
18. Shadrina AS, Smetanina MA, Sokolova EA, et al. Allele rs2010963 C of the VEGFA gene is associated with the decreased risk of primary varicose veins in ethnic Russians. Phlebology 2018;33:27-35.
19. Shadrina AS, Smetanina MA, Sevost'ianova KS, et al. Functional polymorphism rs1024611 in the MCP1 gene is associated with the risk of varicose veins of lower extremities. J Vasc Surg Venous Lymphat Disord 2017;5:561-6.
20. Shadrina A, Voronina E, Smetanina M, et al. Polymorphisms in inflammation-related genes and the risk of primary varicose veins in ethnic Russians. Immunol Res 2018;66:141-50.
21. Bell RK, Durand EY, McLean CY, Eriksson N, Tung JY, et al. A large scale genome wide association study of varicose veins in the 23andMe cohort. In: The 64th Annual Meeting of The American Society of Human Genetics; 2014 Oct 18-22; San Diego, USA: ASHG. Paper no. 2082M; p. 487.
22. Ellinghaus E, Ellinghaus D, Krusche P, et al. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Sci Rep 2017;7:45652.
23. Shevela AI, Gavrilov KA, Plotnikova EY, Sevostianova KS, Filipenko ML, Smetanina MA. Altered expression of the extracellular matrix related genes COL15A1, CHRDL2, EFEMP1, and TIMP1 in Varicose Veins. Eur J Vasc Endovasc Surg 2020;60:e75-6.
24. Shadrina A, Tsepilov Y, Sokolova E, et al. Genome-wide association study in ethnic Russians suggests an association of the MHC class III genomic region with the risk of primary varicose veins. Gene 2018;659:93-9.
25. Shadrina A, Tsepilov Y, Smetanina M, et al. Polymorphisms of genes involved in inflammation and blood vessel development influence the risk of varicose veins. Clin Genet 2018;94:191-9.
26. Fukaya E, Flores AM, Lindholm D, et al. Clinical and genetic determinants of varicose veins. Circulation 2018;138:2869-80.
27. Shadrina AS, Sharapov SZ, Shashkova TI, Tsepilov YA. Varicose veins of lower extremities: Insights from the first large-scale genetic study. PLoS Genet 2019;15:e1008110.
28. Smetanina MA, Shadrina AS, Zolotukhin IA, Seliverstov EI, Filipenko ML. Differentially expressed genes in varicose veins disease: current state of the problem, analysis of the Published Data. Flebol 2017;11:190. (in Russian).
29. Smetanina M, Sipin F, Seliverstov E, Zolotukhin I, Filipenko M. Differentially Expressed genes in lower limb varicose vein disease. Flebol 2020;14:122. (in Russian).
30. Smetanina MA, Kel AE, Sevost'ianova KS, et al. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics 2018;10:1103-19.
31. Smetanina MA, Sipin FA, Sevostyanova KS, Khrapov EA, Zolotukhin IA, Filipenko ML. . Two CpG loci in the regulatory regions of the MFAP5 gene are hypomethylated in varicose veins. In: ABSTRACTS of the International Union of Phlebology Chapter Meeting; 2019 Aug 25-27; Krakow, Poland. Phlebological Review 2019;1:23-4.
32. Smetanina MA, Shevela AI, Gavrilov KA, Filipenko ML. . Modified methylation of the DNA loci related to the genes HRC, DPEP2, and CCN5 in varicose veins. In: BOOK OF ABSTRACTS of the 13th St. Petersburg Venous Forum (Christmas Meetings); 2020 Dec 4-5; St. Petersburg, Russia. ADVANCED PROBLEMS IN PHLEBOLOGY; 2020. p. 11-12.
33. Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013;29:176-86.
34. Legoff L, D'Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019;8:1559.
36. Ashar FN, Zhang Y, Longchamps RJ, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol 2017;2:1247-55.
37. Smetanina MA, Sevost’ianova KS, Shirshova AN, et al. . Quantitative and structural characteristics of mitochondrial DNA in varicose veins. In: SCIENTIFIC PROGRAMME AND BOOK OF ABSTRACTS of the 20th Annual Meeting of the European Venous Forum; 2019 June 27-29; Zurich, Switzerland. Edizioni Minerva Medica;24.
38. Castellani CA, Longchamps RJ, Sumpter JA, et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med 2020;12:84.
39. Kharkevich DA. . Venotropic (phlebotropic) agents. Eksp Klin Farmakol 2004;67:69-77. (in Russian) [PMID: 15079914]
40. Felixsson E, Persson IA, Eriksson AC, Persson K. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study. Phytother Res 2010;24:1297-301.
41. Feldo M, Wójciak-Kosior M, Sowa I, et al. Effect of Diosmin Administration in Patients with Chronic Venous Disorders on Selected Factors Affecting Angiogenesis. Molecules 2019;24:3316.
42. Ivanov V, Roomi MW, Kalinovsky T, Niedzwiecki A, Rath M. Bioflavonoids effectively inhibit smooth muscle cell-mediated contraction of collagen matrix induced by angiotensin II. J Cardiovasc Pharmacol 2005;46:570-6.
43. Zheng Y, Zhang R, Shi W, et al. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 2020;11:8472-92.
44. Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther 2013;8:49-65.
45. Zolotukhin IA, Porembskaya OY, Smetanina MA, Sazhin AV, Filipenko ML, Kirienko AI. Varicose veins: on the verge of discovering the cause? Annals RAMS 2020;75:36-45. (in Russian).
46. Maggioli A. Chronic venous disorders: pharmacological and clinical aspects of micronized purified flavonoid fraction. Phlebolymphology 2016;23:82-91.
47. Ramelet AA. . Venoactive Drugs. In: Goldman MP, Weiss RA, editors. Sclerotherapy 6th ed. Treatment of Varicose and Telangiectatic Leg Veins. Elsevier; 2017. pp. 426-34.
48. Mansilha A, Sousa J. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy. Int J Mol Sci 2018;19:1669.
49. Paysant J, Sansilvestri-Morel P, Bouskela E, Verbeuren TJ. Different flavonoids present in the micronized purified flavonoid fraction (Daflon 500 mg) contribute to its anti-hyperpermeability effect in the hamster cheek pouch microcirculation. Int Angiol 2008;27:81-5. [PMID: 18277344].
50. Yanushko VA, Bayeshko AA, Sushkov SA, Nebylitsyn YS, Nazaruk AM. Benefits of MPFF on primary chronic venous disease-related symptoms and quality of life: the DELTA study. Phlebolymphology 2014;21:146-51.
51. Graças C de Souza M, Cyrino FZ, de Carvalho JJ, Blanc-Guillemaud V, Bouskela E. Protective Effects of Micronized Purified Flavonoid Fraction (MPFF) on a Novel Experimental Model of Chronic Venous Hypertension. Eur J Vasc Endovasc Surg 2018;55:694-702.
52. Kakkos SK, Nicolaides AN. Efficacy of micronized purified flavonoid fraction (Daflon®) on improving individual symptoms, signs and quality of life in patients with chronic venous disease: a systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Int Angiol 2018;37:143-54.
53. Rodnyansky DV, Fokin AA. [Diosmin-containing phlebotropic drugs in varicose eczema]. Angiol Sosud Khir 2019;25:88-92.
54. Kurginyan HM, Raskin VV. Modern view on the therapy of chronic venous insufficiency with micronized purified flavonoid fraction. Cardiovasc Ther Prev 2020;19:2592.
55. Ponomarev ÉA, Strepetov NN, Sotnikov IE, et al. [Use of Detravenol in treatment of chronic venous insufficiency of lower limbs]. Angiol Sosud Khir 2020;26:95-102.
56. Raffetto JD, Eberhardt RT, Dean SM, Ligi D, Mannello F. Pharmacologic treatment to improve venous leg ulcer healing. J Vasc Surg Venous Lymphat Disord 2016;4:371-4.
57. Bush R, Comerota A, Meissner M, Raffetto JD, Hahn SR, Freeman K. Recommendations for the medical management of chronic venous disease: The role of Micronized Purified Flavanoid Fraction (MPFF). Phlebology 2017;32:3-19.
58. Melin MM, Dean SM. RE: A literature review of pharmacological agents to improve venous leg ulcer healing. Letter to the Editor. Wounds 2020;32:A10.
59. U.S. Department of Health & Human Services, National Institutes of Health, NCATS. Inxight: Drugs. Vasculera. Available from: https://drugs.ncats.io/drug/Z7R65IFU98. [Last accessed on 12 Mar 2021].
60. Casili G, Lanza M, Campolo M, et al. Therapeutic potential of flavonoids in the treatment of chronic venous insufficiency. Vascul Pharmacol 2021;137:106825.
61. U.S. Department of Health & Human Services, National Institutes of Health, NCATS. Inxight: Drugs. Diosmin. Available from: https://drugs.ncats.io/drug/7QM776WJ5N. [Last accessed on 12 Mar 2021].
62. Sirtori CR. Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacol Res 2001;44:183-93.
63. Stücker M, Debus ES, Hoffmann J, et al. Consensus statement on the symptom-based treatment of chronic venous diseases. J Dtsch Dermatol Ges 2016;14:575-83.
64. Peralta GR, Arévalo Gardoqui J, Llamas Macías FJ, Navarro Ceja VH, Mendoza Cisneros SA, Martínez Macías CG. Clinical and capillaroscopic evaluation in the treatment of chronic venous insufficiency with Ruscus aculeatus, hesperidin methylchalcone and ascorbic acid in venous insufficiency treatment of ambulatory patients. Int Angiol 2007;26:378-84.
65. Almeida Cyrino FZG, Balthazar DS, Sicuro FL, Bouskela E. Effects of venotonic drugs on the microcirculation: Comparison between Ruscus extract and micronized diosmine1. Clin Hemorheol Microcirc 2018;68:371-82.
66. Kiesewetter H, Koscielny J, Kalus U, et al. Efficacy of orally administered extract of red vine leaf AS 195 (folia vitis viniferae) in chronic venous insufficiency (stages I-II). A randomized, double-blind, placebo-controlled trial. Arzneimittelforschung 2000;50:109-17.
67. Rabe E, Stücker M, Esperester A, Schäfer E, Ottillinger B. Efficacy and tolerability of a red-vine-leaf extract in patients suffering from chronic venous insufficiency--results of a double-blind placebo-controlled study. Eur J Vasc Endovasc Surg 2011;41:540-7.
68. Elleuch N, Zidi H, Bellamine Z, Hamdane A, Guerchi M, Jellazi N. CVD study investigators. Sulodexide in Patients with Chronic Venous Disease of the Lower Limbs: Clinical Efficacy and Impact on Quality of Life. Adv Ther 2016;33:1536-49.
69. Chupin AV, Katorkin SE, Katel’nitskiĭ II, et al. Sulodexide in treatment of chronic venous insufficiency. Results of the All-Russian multicenter programme ACVEDUCT. Angiol Sosud Khir 2018;24:47-55. (in Russian).
70. Carroll BJ, Piazza G, Goldhaber SZ. Sulodexide in venous disease. J Thromb Haemost 2019;17:31-8.
71. Gohil KJ, Patel JA, Gajjar AK. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J Pharm Sci 2010;72:546-56.
72. Martinez-Zapata MJ, Vernooij RW, Simancas-Racines D, et al. Phlebotonics for venous insufficiency. Cochrane Database Syst Rev 2020;11:CD003229.
73. Karetová D, Suchopár J, Bultas J. Diosmin/hesperidin: a cooperating tandem, or is diosmin crucial and hesperidin an inactive ingredient only? Vnitr Lek 2020;66:97-103.