REFERENCES
1. Valbuena G, Walker DH. The endothelium as a target for infections. Annu Rev Pathol 2006;1:171-98.
3. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation 2013;20:239-47.
4. Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg 2006;61:213-9.
5. Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK. Leukocyte transendothelial migration: a junctional affair. Semin Immunol 2002;14:105-13.
6. Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci 2001;16:84-8.
7. Wang L, Li L, Shojaei F, Levac K, Cerdan C, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004;21:31-41.
8. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527-61.
9. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013;9:1057-69.
10. Packer CS, Griffith SL, Roepke JE, Meiss RA, Rhoades RA. Myosin heavy chain isoform patterns do not correlate with force-velocity relationships in pulmonary arterial compared with systemic arterial smooth muscle. Adv Exp Med Biol 1991;304:397-402.
11. Zhu Y, Cui G, Miyauchi E, Nakanishi Y, Mukohira H, et al. Intestinal epithelial cell-derived IL-15 determines local maintenance and maturation of intra-epithelial lymphocytes in the intestine. Int Immunol 2020;32:307-19.
12. Emi-Sugie M, Shoda T, Futamura K, Takeda T, Ainai A, et al. Robust production of IL-33 and TSLP by lung endothelial cells in response to dsRNA stimulation. J Allergy Clin Immunol 2020; doi: 10.1016/j.jaci.2020.03.042.
13. Salvador B, Arranz A, Francisco S, Cordoba L, Punzon C, et al. Modulation of endothelial function by Toll like receptors. Pharmacol Res 2016;108:46-56.
14. Pons S, Arnaud M, Loiselle M, Arrii E, Azoulay E, et al. Immune consequences of endothelial cells’ activation and dysfunction during sepsis. Crit Care Clin 2020;36:401-13.
15. Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide 2015;45:20-6.
16. Danese S, Fiocchi C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol 2005;25:103-21.
17. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med 2020; doi: 10.1164/rccm.201910-1911TR.
18. Chimen M, Apta BH, McGettrick HM. Introduction: T cell trafficking in inflammation and immunity. Methods Mol Biol 2017;1591:73-84.
19. Savage CO, Brooks CJ, Harcourt GC, Picard JK, King W, et al. Human vascular endothelial cells process and present autoantigen to human T cell lines. Int Immunol 1995;7:471-9.
20. Lim WC, Olding M, Healy E, Millar TM. Human endothelial cells modulate CD4(+) T cell populations and enhance regulatory T cell suppressive capacity. Front Immunol 2018;9:565.
21. Taflin C, Favier B, Baudhuin J, Savenay A, Hemon P, et al. Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A 2011;108:2891-6.
22. Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, et al. Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 2007;179:4397-404.
23. Shivshankar P, Li YD, Mueller-Ortiz SL, Wetsel RA. In response to complement anaphylatoxin peptides C3a and C5a, human vascular endothelial cells migrate and mediate the activation of B-cells and polarization of T-cells. FASEB J 2020; doi: 10.1096/fj.201902397R.
24. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009;21:575-81.
25. Liao J, Liu R, Yin L, Pu Y. Expression profiling of exosomal miRNAs derived from human esophageal cancer cells by Solexa high-throughput sequencing. Int J Mol Sci 2014;15:15530-51.
26. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 2014;123:208-16.
27. Wieckowski E, Whiteside TL. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 2006;36:247-54.
28. Zhang J, Li S, Li L, Li M, Guo C, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13:17-24.
29. Andersen JS, Mann M. Organellar proteomics: turning inventories into insights. EMBO Rep 2006;7:874-9.
30. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018;75:193-208.
31. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res 2008;68:7864-71.
32. Beer L, Zimmermann M, Mitterbauer A, Ellinger A, Gruber F, et al. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: impact of released proteins and exosomes for tissue regeneration. Sci Rep 2015;5:16662.
33. Xiao X, Yu S, Li S, Wu J, Ma R, et al. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One 2014;9:e89534.
34. Kanemoto S, Nitani R, Murakami T, Kaneko M, Asada R, et al. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem Biophys Res Commun 2016;480:166-72.
35. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43-51.
36. Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019;21:9-17.
37. Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic 2008;9:871-81.
38. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015;16:24-43.
39. Wu Z, Wang L, Li J, Wang L, Wu Z, et al. Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol 2018;9:3066.
40. Mantel PY, Marti M. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 2014;16:344-54.
41. Rossaint J, Kuhne K, Skupski J, Van Aken H, Looney MR, et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun 2016;7:13464.
42. Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandona D, et al. Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 2007;109:3856-64.
43. Gulinelli S, Salaro E, Vuerich M, Bozzato D, Pizzirani C, et al. IL-18 associates to microvesicles shed from human macrophages by a LPS/TLR-4 independent mechanism in response to P2X receptor stimulation. Eur J Immunol 2012;42:3334-45.
44. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, et al. Extracellular vesicles from neural stem cells transfer IFN-gamma via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 2014;56:193-204.
45. Zhang HG, Liu C, Su K, Yu S, Zhang L, et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 2006;176:7385-93.
46. Perez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, et al. Extracellular vesicles and chronic inflammation during HIV infection. J Extracell Vesicles 2019;8:1687275.
47. Chen Z, Larregina AT, Morelli AE. Impact of extracellular vesicles on innate immunity. Curr Opin Organ Transplant 2019;24:670-8.
48. Park SJ, Kim JM, Kim J, Hur J, Park S, et al. Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. Proc Natl Acad Sci U S A 2018;115:E11721-30.
49. Chen H, Kasagi S, Chia C, Zhang D, Tu E, et al. Extracellular vesicles from apoptotic cells promote tgfbeta production in macrophages and suppress experimental colitis. Sci Rep 2019;9:5875.
50. Goto Y, Ogawa Y, Tsumoto H, Miura Y, Nakamura TJ, et al. Contribution of the exosome-associated form of secreted endoplasmic reticulum aminopeptidase 1 to exosome-mediated macrophage activation. Biochim Biophys Acta Mol Cell Res 2018;1865:874-88.
51. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996;183:1161-72.
52. Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP. Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. Am J Pathol 2009;175:696-705.
53. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007;110:3234-44.
54. Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS. Exosomes released from M. tuberculosis infected cells can suppress IFN-gamma mediated activation of naive macrophages. PLoS One 2011;6:e18564.
55. Kim MR, Hong SW, Choi EB, Lee WH, Kim YS, et al. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy 2012;67:1271-81.
56. Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 2011;66:351-9.
57. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 2011;121:1471-83.
58. Tan L, Wu H, Liu Y, Zhao M, Li D, et al. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016;49:357-65.
59. Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol 2014;5:518.
60. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002;168:3235-41.
61. Wahlgren J, Karlson Tde L, Glader P, Telemo E, Valadi H. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One 2012;7:e49723.
62. Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martinez-Lostao L. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells 2019;8.
63. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095-128.
64. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 2014;4:95-111.
65. Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, et al. Host-directed drug therapies for neglected tropical diseases caused by protozoan parasites. Front Microbiol 2018;9:2655.
66. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, et al. Control of neglected tropical diseases. N Engl J Med 2007;357:1018-27.
67. Fletcher SM, Stark D, Harkness J, Ellis J. Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 2012;25:420-49.
68. Cunha-Neto E, Chevillard C, Rodrigues MM, Bozza MT. Immunology and infection by protozoan parasites. Mediators Inflamm 2015;2015:504951.
69. Norman FF, Comeche B, Chamorro S, Perez-Molina JA, Lopez-Velez R. Update on the major imported protozoan infections in travelers and migrants. Future Microbiol 2020;15:213-25.
70. Burgess SL, Gilchrist CA, Lynn TC, Petri WA Jr. Parasitic protozoa and interactions with the host intestinal microbiota. Infect Immun 2017;85.
71. Chen MX, Ai L, Chen JH, Feng XY, Chen SH, et al. DNA microarray detection of 18 important human blood protozoan species. PLoS Negl Trop Dis 2016;10:e0005160.
72. Andersson AC, Resende M, Salanti A, Nielsen MA, Holst PJ. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine 2017;35:1140-7.
73. Gillrie MR, Ho M. Dynamic interactions of Plasmodium spp. with vascular endothelium. Tissue Barriers 2017;5:e1268667.
74. Spillman NJ, Dalmia VK, Goldberg DE. Exported epoxide hydrolases modulate erythrocyte vasoactive lipids during plasmodium falciparum infection. mBio 2016;7.
75. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, et al. Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors. Exp Parasitol 2014;145:34-41.
76. Abedin TS, Thompson LK, Miller DO, Krupicka E. Structural and magnetic properties of a self-assembled spheroidal triakonta-hexanuclear Cu36 cluster. Chem Commun (Camb) 2003:708-9.
77. Fritzsche C, Schleicher U, Bogdan C. Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis. Immunobiology 2010;215:826-32.
78. ElHassan AM, Gaafar A, Theander TG. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major. Clin Exp Immunol 1995;99:445-53.
79. Henseleit U, Steinbrink K, Sunderkotter C, Goebeler M, Roth J, et al. Expression of murine VCAM-1 in vitro and in different models of inflammation in vivo: correlation with immigration of monocytes. Exp Dermatol 1995;4:249-56.
80. Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, et al. Leishmania major infection-induced VEGF-A/VEGFR-2 signaling promotes lymphangiogenesis that controls disease. J Immunol 2016;197:1823-31.
81. Araujo AP, Giorgio S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis. Arch Dermatol Res 2015;307:671-82.
82. Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, et al. The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization during Leishmania donovani infection. PLoS Pathog 2015;11:e1004681.
83. Konradt C, Ueno N, Christian DA, Delong JH, Pritchard GH, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol 2016;1:16001.
84. Deckert-Schluter M, Bluethmann H, Kaefer N, Rang A, Schluter D. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Am J Pathol 1999;154:1549-61.
85. Coates BM, Sullivan DP, Makanji MY, Du NY, Olson CL, et al. Endothelial transmigration by Trypanosoma cruzi. PLoS One 2013;8:e81187.
86. Barrias ES, de Carvalho TM, De Souza W. Trypanosoma cruzi: entry into mammalian host cells and parasitophorous vacuole formation. Front Immunol 2013;4:186.
87. Todorov AG, Andrade D, Pesquero JB, Araujo Rde C, Bader M, et al. Trypanosoma cruzi induces edematogenic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. FASEB J 2003;17:73-5.
88. Del Nery E, Juliano MA, Lima AP, Scharfstein J, Juliano L. Kininogenase activity by the major cysteinyl proteinase (cruzipain) from Trypanosoma cruzi. J Biol Chem 1997;272:25713-8.
89. Wittner M, Christ GJ, Huang H, Weiss LM, Hatcher VB, et al. Trypanosoma cruzi induces endothelin release from endothelial cells. J Infect Dis 1995;171:493-7.
90. Tanowitz HB, Gumprecht JP, Spurr D, Calderon TM, Ventura MC, et al. Cytokine gene expression of endothelial cells infected with Trypanosoma cruzi. J Infect Dis 1992;166:598-603.
91. Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL, et al. Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med 2007;204:929-40.
92. Silva JF, Capettini LS, da Silva JF, Sales-Junior P, Cruz JS, et al. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice. Vascul Pharmacol 2016;82:73-81.
93. Mukherjee S, Huang H, Petkova SB, Albanese C, Pestell RG, et al. Trypanosoma cruzi infection activates extracellular signal-regulated kinase in cultured endothelial and smooth muscle cells. Infect Immun 2004;72:5274-82.
94. Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J, et al. Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis. Infect Immun 2003;71:2859-67.
95. Huang H, Calderon TM, Berman JW, Braunstein VL, Weiss LM, et al. Infection of endothelial cells with Trypanosoma cruzi activates NF-kappaB and induces vascular adhesion molecule expression. Infect Immun 1999;67:5434-40.
96. Grab DJ, Kennedy PG. Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 2008;14:344-51.
97. Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, et al. Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. J Clin Invest 2004;114:689-94.
98. Girard M, Giraud S, Courtioux B, Jauberteau-Marchan MO, Bouteille B. Endothelial cell activation in the presence of African trypanosomes. Mol Biochem Parasitol 2005;139:41-9.
99. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651.
100. Ammar Z, Plazolles N, Baltz T, Coustou V. Identification of trans-sialidases as a common mediator of endothelial cell activation by African trypanosomes. PLoS Pathog 2013;9:e1003710.
101. Nikolskaia OV, de A Lima APC, Kim YV, Lonsdale-Eccles JD, Fukuma T, et al. Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest 2006;116:2739-47.
102. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 2011;6:e26588.
103. Martin-Jaular L, de Menezes-Neto A, Monguio-Tortajada M, Elizalde-Torrent A, Diaz-Varela M, et al. Corrigendum: spleen-dependent immune protection elicited by CpG adjuvanted reticulocyte-derived exosomes from malaria infection is associated with changes in T cell subsets’ distribution. Front Cell Dev Biol 2016;4:153.
104. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013;153:1120-33.
105. Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 2010;123:842-52.
106. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 2010;185:5011-22.
107. Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, et al. Exosome secretion by the parasitic protozoan leishmania within the sand fly midgut. Cell Rep 2015;13:957-67.
108. Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One 2014;9:e95007.
109. Ghosh J, Bose M, Roy S, Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 2013;13:277-88.
110. Schnitzer JK, Berzel S, Fajardo-Moser M, Remer KA, Moll H. Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine 2010;28:5785-93.
111. Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 2004;72:4127-37.
112. Beauvillain C, Ruiz S, Guiton R, Bout D, Dimier-Poisson I. A vaccine based on exosomes secreted by a dendritic cell line confers protection against T. gondii infection in syngeneic and allogeneic mice. Microbes Infect 2007;9:1614-22.
113. Li Y, Liu Y, Xiu F, Wang J, Cong H, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. Int J Nanomedicine 2018;13:467-77.
114. Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response. Parasite Immunol 2018;40:e12571.
115. Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol 2012;188:1942-52.
116. Cestari I, Ramirez MI. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells. PLoS One 2010;5:e9721.
117. Wyllie MP, Ramirez MI. Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process. Pathog Dis 2017;75.
118. Borges BC, Uehara IA, Dias LO, Brigido PC, da Silva CV, et al. Mechanisms of infectivity and evasion derived from microvesicles cargo produced by trypanosoma cruzi. Front Cell Infect Microbiol 2016;6:161.
119. Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, et al. Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 2009;11:29-39.
120. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, et al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 2013;12:883-97.
121. Ramirez-Toloza G, Ferreira A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: the specific roles of host/parasite molecules and trypanosoma cruzi calreticulin. Front Microbiol 2017;8:1667.
122. Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular vesicles: packages sent with complement. Front Immunol 2018;9:721.
123. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, et al. Extracellular vesicles from trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 2016;164:246-57.
124. Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Front Immunol 2018;9:218.
126. Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 2013;19:156-67.
127. Kavunga-Membo H, Ilombe G, Masumu J, Matangila J, Imponge J, et al. Molecular identification of Plasmodium species in symptomatic children of Democratic Republic of Congo. Malar J 2018;17:334.
128. Gillrie MR, Lee K, Gowda DC, Davis SP, Monestier M, et al. Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. Am J Pathol 2012;180:1028-39.
129. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, et al. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 1999;29:927-37.
130. Idro R, Marsh K, John CC, Newton CR. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 2010;68:267-74.
131. Kats LM, Proellocks NI, Buckingham DW, Blanc L, Hale J, et al. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim Biophys Acta 2015;1848:1619-28.
132. Combes V, Taylor TE, Juhan-Vague I, Mege JL, Mwenechanya J, et al. Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 2004;291:2542-4.
133. Weinkopff T, Roys H, Bowlin A, Scott P. Leishmania infection induces macrophage vascular endothelial growth factor A production in an ARNT/HIF-dependent manner. Infect Immun 2019;87.
134. Chowdhury KD, Sen G, Sarkar A, Biswas T. Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis. Biochim Biophys Acta 2011;1810:652-65.
135. Lugo-Yarbuh A, Valera M, Alarcon M, Moreno E, Premoli-Percoco G, et al. Detection of Leishmania (Viannia) braziliensis in vascular endothelium lesions of patients with localized cutaneous leishmaniasis. Invest Clin 2003;44:61-76.
136. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 2008;9:R35.
137. Heinonen KM, Dube N, Bourdeau A, Lapp WS, Tremblay ML. Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci U S A 2006;103:2776-81.
138. Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 1999;29:3737-44.
139. Furtado JM, Smith JR, Belfort R Jr, Gattey D, Winthrop KL. Toxoplasmosis: a global threat. J Glob Infect Dis 2011;3:281-4.
140. Derouin F, Pelloux H, Parasitology ESGoC. Prevention of toxoplasmosis in transplant patients. Clin Microbiol Infect 2008;14:1089-101.
141. Furtado JM, Bharadwaj AS, Chipps TJ, Pan Y, Ashander LM, et al. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro. Immunol Cell Biol 2012;90:912-5.
142. Beauvillain C, Juste MO, Dion S, Pierre J, Dimier-Poisson I. Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine 2009;27:1750-7.
143. Li Y, Xiu F, Mou Z, Xue Z, Du H, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine (Lond) 2018;13:1157-68.
144. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, et al. Chagas’ disease. Clin Microbiol Rev 1992;5:400-19.
145. Morris SA, Tanowitz HB, Wittner M, Bilezikian JP. Pathophysiological insights into the cardiomyopathy of Chagas’ disease. Circulation 1990;82:1900-9.
146. Torres SH, Finol HJ, Montes de Oca M, Vasquez F, Puigbo JJ, et al. Capillary damage in skeletal muscle in advanced Chagas’ disease patients. Parasitol Res 2004;93:364-8.
147. Rossi MA. Microvascular changes as a cause of chronic cardiomyopathy in Chagas’ disease. Am Heart J 1990;120:233-6.
148. Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 2011;24:655-81.
150. Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL, et al. Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 2013;62:767-76.
151. Coura JR, Dias JC. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 2009;104 Suppl 1:31-40.
152. Burleigh BA, Andrews NW. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 1995;49:175-200.
153. Tanowitz HB, Burns ER, Sinha AK, Kahn NN, Morris SA, et al. Enhanced platelet adherence and aggregation in Chagas’ disease: a potential pathogenic mechanism for cardiomyopathy. Am J Trop Med Hyg 1990;43:274-81.
154. Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 2000;192:1289-300.
155. Andrade D, Serra R, Svensjo E, Lima AP, Ramos ES Jr, et al. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012;165:1333-47.
156. Nardy AF, Freire-de-Lima CG, Perez AR, Morrot A. Role of trypanosoma cruzi trans-sialidase on the escape from host immune surveillance. Front Microbiol 2016;7:348.
157. Libby P, Alroy J, Pereira ME. A neuraminidase from Trypanosoma cruzi removes sialic acid from the surface of mammalian myocardial and endothelial cells. J Clin Invest 1986;77:127-35.
158. Petkova SB, Huang H, Factor SM, Pestell RG, Bouzahzah B, et al. The role of endothelin in the pathogenesis of Chagas’ disease. Int J Parasitol 2001;31:499-511.
159. Petkova SB, Tanowitz HB, Magazine HI, Factor SM, Chan J, et al. Myocardial expression of endothelin-1 in murine Trypanosoma cruzi infection. Cardiovasc Pathol 2000;9:257-65.
160. Herrera RN, Diaz de Amaya EI, Perez Aguilar RC, Joo Turoni C, Maranon R, et al. Inflammatory and prothrombotic activation with conserved endothelial function in patients with chronic, asymptomatic Chagas disease. Clin Appl Thromb Hemost 2011;17:502-7.
161. Molina-Berrios A, Campos-Estrada C, Lapier M, Duaso J, Kemmerling U, et al. Protection of vascular endothelium by aspirin in a murine model of chronic Chagas’ disease. Parasitol Res 2013;112:2731-9.
162. Molina-Berrios A, Campos-Estrada C, Lapier M, Duaso J, Kemmerling U, et al. Benznidazole prevents endothelial damage in an experimental model of Chagas disease. Acta Trop 2013;127:6-13.
163. Gonzalez-Herrera F, Cramer A, Pimentel P, Castillo C, Liempi A, et al. Simvastatin attenuates endothelial activation through 15-Epi-Lipoxin A4 production in murine chronic chagas cardiomyopathy. Antimicrob Agents Chemother 2017;61.
164. de Pablos Torro LM, Retana Moreira L, Osuna A. Extracellular vesicles in chagas disease: a new passenger for an old disease. Front Microbiol 2018;9:1190.
165. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell 2016;164:1226-32.
166. Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R. Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int J Cancer 2016;138:14-21.
167. Jazin EE, Bontempi EJ, Sanchez DO, Aslund L, Henriksson J, et al. Trypanosoma cruzi exoantigen is a member of a 160 kDa gene family. Parasitology 1995;110:61-9.
168. Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin Epidemiol 2014;6:257-75.
169. Morrison LJ. Parasite-driven pathogenesis in Trypanosoma brucei infections. Parasite Immunol 2011;33:448-55.
170. Sternberg JM, Maclean L. A spectrum of disease in human African trypanosomiasis: the host and parasite genetics of virulence. Parasitology 2010;137:2007-15.
171. Gull K. The cell biology of parasitism in Trypanosoma brucei: insights and drug targets from genomic approaches? Curr Pharm Des 2002;8:241-56.
172. Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, et al. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis 2009;200:1556-65.
173. Viswambharan H, Seebeck T, Yang Z. Enhanced endothelial nitric oxide-synthase activity in mice infected with Trypanosoma brucei. Int J Parasitol 2003;33:1099-104.
174. Rodgers J, Steiner I, Kennedy PGE. Generation of neuroinflammation in human African trypanosomiasis. Neurol Neuroimmunol Neuroinflamm 2019;6.
175. Magez S, Lucas R, Darji A, Songa EB, Hamers R, et al. Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunol 1993;15:635-41.
176. Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. Ann Transl Med 2017;5:23.
177. Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 2015;31:477-89.
178. Eliaz D, Kannan S, Shaked H, Arvatz G, Tkacz ID, et al. Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017;13:e1006245.
179. Amole BO, Clarkson AB Jr, Shear HL. Pathogenesis of anemia in Trypanosoma brucei-infected mice. Infect Immun 1982;36:1060-8.
180. Paulnock DM, Freeman BE, Mansfield JM. Modulation of innate immunity by African trypanosomes. Parasitology 2010;137:2051-63.