REFERENCES

1. Chen L, Deng H, Cui H, Fang J, Zuo Z, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018;9:7204-18.

2. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxidants Redox Signal 2014;20:1126-67.

3. Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, et al. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol - Cell Physiol 2017;312:C749-64.

4. Chelombitko MA. Role of reactive oxygen species in inflammation: a minireview. Moscow Univ Biol Sci Bull 2018;73:199-202.

5. Yang W, Tao Y, Wu Y, Zhao X, Ye W, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 2019;10:1076.

6. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47-95.

7. Cai Z, Yan LJ. Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res 2013;1:15-26.

8. Cobley JN, Husi H. Immunological techniques to assess protein thiol redox state: opportunities, challenges and solutions. Antioxidants 2020;9:31.

9. Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, et al. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 2017;60:327-38.

10. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010;49:1603-16.

11. Austin V, Crack PJ, Bozinovski S, Miller AA, Vlahos R. COPD and stroke: are systemic inflammation and oxidative stress the missing links? Clin Sci 2016;130:1039-50.

12. Rovira-Llopis S, Rocha M, Falcon R, de Pablo C, Alvarez A, et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to Nephropathy in type 2 diabetes? Antioxidants Redox Signal 2013;19:1452-8.

13. Hansen PR. Chronic inflammatory diseases and atherosclerotic cardiovascular disease: innocent bystanders or partners in crime? Curr Pharm Des 2018;24:281-90.

14. Lorenzatti AJ, Servato ML. New evidence on the role of inflammation in CVD risk. Curr Opin Cardiol 2019;34:418-23.

15. Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and oxidative stress. J Clin Med 2017;6:22.

16. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, et al. 2018 ESC/ESH Guidelines for themanagement of arterial hypertension. Eur Heart J 2018;39:3021-104.

17. Vasan RS, Short MI, Niiranen TJ, Xanthakis V, DeCarli C, et al. Interrelations between arterial stiffness, target organ damage, and cardiovascular disease outcomes. J Am Heart Assoc 2019;8:e012141.

18. Briasoulis A, Bakri GL. Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep 2013;15:340.

19. Yuan J, Zou XR, Han SP, Cheng H, Wang L, et al. Prevalence and risk factors for cardiovascular disease among chronic kidney disease patients: results from the Chinese cohort study of chronic kidney disease (C-STRIDE). BMC Nephrol 2017;18:23.

20. Tomey MI, Winston JA. Cardiovascular pathophysiology in chronic kidney disease: opportunities to transition from disease to health. Ann Glob Health 2014;80:69-76.

21. Subbiah AK, Chhabra YK, Mahajan S. Cardiovascular disease in patients with chronic kidney disease: a neglected subgroup. Heart Asia 2016;8:56-61.

22. Rahman M, Xie D, Feldman HI, Go AS, He J, et al. Association between chronic kidney disease progression and cardiovascular disease: results from the CRIC study. Am J Nephrol 2014;40:399-407.

23. Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy. Am J Roentgenol 2004;183:1673-89.

24. Pyxaras SA, Sinagra G, Mangiacapra F, Perkan A, Di Serafino L, et al. Contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention without acute left ventricular ejection fraction impairment. Am J Cardiol 2013;111:684-8.

25. Sato A, Aonuma K, Watanabe M, Hirayama A, Tamaki N, et al. Association of contrast-induced nephropathy with risk of adverse clinical outcomes in patients with cardiac catheterization: from the CINC-J study. Int J Cardiol 2017;227:424-9.

26. Rear R, Bell RM, Hausenloy DJ, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016;102:638-48.

27. Hossain MA, Costanzo E, Cosentino J, Patel C, Qaisar H, et al. Contrast-induced nephropathy: pathophysiology, risk factors, and prevention. Saudi J Kidney Dis Transpl 2018;29:1-9.

28. McDonald JS, McDonald RJ, Tran CL, Kolbe AB, Williamson EE, et al. Postcontrast acute kidney injury in pediatric patients: a cohort study. Am J Kidney Dis 2018;72:811-8.

29. Demirtas L, Turkmen K, Kandemir FM, Ozkaraca M, Kucukler S, et al. The possible role of interleukin-33 as a new player in the pathogenesis of contrast-induced nephropathy in diabetic rats. Ren Fail 2016;38:952-60.

30. Oweis AO, Alshelleh SA, Daoud AK, Smadi MM, Alzoubi KH. Inflammatory milieu in contrast-induced nephropathy: a prospective single-center study. Int J Nephrol Renovasc Dis 2018;11:211-5.

31. Yildirim E, Ermis E, Cengiz M. Inflammatory markers of contrast-induced nephropathy in patients with acute coronary syndrome. Coron Artery Dis 2020;31:279-83.

32. Murashima M, Nishimoto M, Kokubu M, Hamano T, Matsui M, et al. Inflammation as a predictor of acute kidney injury and mediator of higher mortality after acute kidney injury in non-cardiac surgery. Sci Rep 2019;9:20260.

33. de Souza Santos V, Peters B, Côco LZ, Alves GM, de Assis ALEM, et al. Silymarin protects against radiocontrast-induced nephropathy in mice. Life Sci 2019;228:305-15.

34. Kim JE, Bae SY, Ahn SY, Kwon YJ, Ko GJ. The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy. Sci Rep 2019;9:2608.

35. Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019;7:e1332-45.

36. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1736-88.

37. Astin F, Jones K, Thompson DR. Prevalence and patterns of anxiety and depression in patients undergoing elective percutaneous transluminal coronary angioplasty. Heart Lung 2005;34:393-401.

38. Chhabra L, Zain MA, Siddiqui WJ. Angioplasty. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.

39. Nadolski GJ, Stavropoulos SW. Contrast alternatives for iodinated contrast allergy and renal dysfunction: options and limitations. J Vasc Surg 2013;57:593-8.

40. Schraeder R. Contrast media selection in interventional cardiology. J Clin Basic Cardiol 2001;4:245-8.

41. Al Shammeri O, Garcia LA. Thrombolysis in the age of primary percutaneous coronary intervention: mini-review and meta-analysis of early PCI. Int J Health Sci (Qassim) 2013;7:91-100.

42. Barauskas M, Unikas R, Tamulenaite E, Unikaite R. The impact of clinical and angiographic factors on percutaneous coronary angioplasty outcomes in patients with acute ST-elevation myocardial infarction. Arch Med Sci Atheroscler Dis 2016;1:e150-7.

43. Darvishpour A, Javadi-Pashaki N, Salari A, Sadeghi T, Taleshan-Nejad M. Factors associated with quality of life in patients undergoing coronary angioplasty. Int J Health Sci (Qassim) 2017;11:35-41.

44. Kim MJ, Jeon DS, Gwon HC, Kim SJ, Chang K, et al. Health-related quality-of-life after percutaneous coronary intervention in patients with UA/NSTEMI and STEMI: the Korean multicenter registry. J Korean Med Sci 2013;28:848-54.

45. Mandal A, Paudel MS, Kafle P, Khalid M, Bhattarai B, et al. Contrast-induced nephropathy following percutaneous coronary intervention at a tertiary cardiac center in Nepal. Cureus 2018;10:e3331.

46. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. 2014 ESC/EACTS Guidelines on Myocardial Revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed With the Special Contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541-619.

47. Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med 1990;89:615-20.

48. Diamantopoulos A, Patrone L, Santonocito S, Theodoulou I, Ilyas S, et al. Carbon dioxide angiography during peripheral angioplasty procedures significantly reduces the risk of contrast-induced nephropathy in patients with chronic kidney disease. CVIR Endovasc 2020;3:9.

49. Ghumman SS, Weinerman J, Khan A, Cheema M, Levin D, et al. Contrast-induced nephropathy following peripheral angiography with carbon dioxide versus iodinated contrast media: a systematic review and meta-analysis of current literature. J Am Coll Cardiol 2017;69:2088.

50. Andreis A, Budano C, Levis M, Garrone P, Usmiani T, et al. Contrast-induced kidney injury: how does it affect long-term cardiac mortality? J Cardiovasc Med 2017;18:908-15.

51. Neyra JA, Shah S, Mooney R, Jacobsen G, Yee J, et al. Contrast-induced acute kidney injury following coronary angiography: a cohort study of hospitalized patients with or without chronic kidney disease. Nephrol Dial Transplant 2013;28:1463-71.

52. Schilp J, De Blok C, Langelaan M, Spreeuwenberg P, Wagner C. Guideline adherence for identification and hydration of high-risk hospital patients for contrast-induced nephropathy. BMC Nephrol 2014;15:2.

53. Haq MFU, Yip CS, Arora P. The conundrum of contrast-induced acute kidney injury. J Thorac Dis 2020;12:1721-7.

54. Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, et al. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 2004;44:1780-5.

55. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J Am Coll Cardiol 2004;44:1393-9.

56. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR cath-PCI registry. JACC Cardiovasc Interv 2014;7:1-9.

57. Watabe H, Sato A, Hoshi T, Takeyasu N, Abe D, et al. Association of contrast-induced acute kidney injury with long-term cardiovascular events in acute coronary syndrome patients with chronic kidney disease undergoing emergent percutaneous coronary intervention. Int J Cardiol 2014;174:57-63.

58. Berwanger O. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: Main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT). Circulation 2011;124:1250-9.

59. Bolognese L, Falsini G, Schwenke C, Grotti S, Limbruno U, et al. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 2012;109:67-74.

60. Mohammed NA, Rafie I, Mahfouz A, Achkar K, Hajar R. Contrast-induced nephropathy. Heart Views 2013;14:106-16.

61. McCullough PA, Soman SS. Contrast-induced nephropathy. Crit Care Clin 2005;21:261-80.

62. Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, Heretis I, Wilks MF, et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther 2017;180:99-112.

63. Solomon R, Dauerman HL. Contrast-induced acute kidney injury. Circulation 2010;122:2451-5.

64. Morcos R, Kucharik M, Bansal P, Al Taii H, Manam R, et al. Contrast-induced acute kidney injury: review and practical update. Clin Med Insights Cardiol 2019;13:1179546819878680.

65. Ward DB, Valentovic MA. Contrast induced acute kidney injury and direct cytotoxicity of iodinated radiocontrast media on renal proximal tubule cells. J Pharmacol Exp Ther 2019;370:160-71.

66. Celik T, Yilmaz MI, Balta S, Ozturk C, Unal HU, et al. The relationship between plasma whole blood viscosity and cardiovascular events in patients with chronic kidney disease. Clin Appl Thromb 2017;23:663-70.

67. Peters SAE, Woodward M, Rumley A, Tunstall-Pedoe HD, Lowe GDO. Plasma and blood viscosity in the prediction of cardiovascular disease and mortality in the Scottish Heart Health Extended Cohort Study. Eur J Prev Cardiol 2017;24:161-7.

68. Sugimori H, Tomoda F, Koike T, Kurosaki H, Masutani T, et al. Increased blood viscosity is associated with reduced renal function and elevated urinary albumin excretion in essential hypertensives without chronic kidney disease. Hypertens Res 2013;36:247-51.

69. Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017;125:57-71.

70. Gavras I, Gavras H. Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 2002;16 Suppl 2:S2-6.

71. Ibrahim NE, Shrestha S, McCarthy C, Lyass A, Li Y, et al. Endothelin-1 predicts incident heart failure, incident myocardial infarction, cardiovascular mortality, and all-cause mortality in patients undergoing diagnostic coronary angiography: results from the catheter sampled blood archive in cardiovascular disease (CASABLANCA) study. J Am Coll Cardiol 2018;71:A773.

72. Ozkok S, Ozkok A. Contrast-induced acute kidney injury: A review of practical points. World J Nephrol 2017;6:86-99.

73. Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, et al. Adenosine and the cardiovascular system. Am J Cardiovasc Drugs 2019;19:449-64.

74. Huang YT, Chen YY, Lai YH, Cheng CC, Lin TC, et al. Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, by reducing the production of reactive oxygen species in HK-2 human renal proximal tubule epithelial cells in vitro. Int J Mol Med 2016;37:83-91.

75. Jeong BY, Lee HY, Park CG, Kang J, Yu SL, et al. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury. PLoS One 2018;13:e0191034.

76. Chen Q, Zhang Y, Ding D, Xia M, Li D, et al. Estimated glomerular filtration rate and mortality among patients with coronary heart disease. PLoS One 2016;11:e0161599.

77. Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 2015;6:472-85.

78. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13.

79. Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, et al. Mitochondrial damage and mitochondria-targeted antioxidant protection in LPS-induced acute kidney injury. Antioxidants 2019;8:176.

80. Tang C, Han H, Yan M, Zhu S, Liu J, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 2018;14:880-97.

81. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta - Mol Basis Dis 2017;1863:1066-77.

82. Nicolson GL. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr Med (Encinitas) 2014;13:35-43.

83. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019;11:2090.

84. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 2018;50:121-7.

85. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019;51:1-13.

86. Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, et al. Mitochondria and cardiovascular diseases - from pathophysiology to treatment. Ann Transl Med 2018;6:256.

87. Korge P, John SA, Calmettes G, Weiss JN. Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role of complex II. J Biol Chem 2017;292:9896-905.

88. Manskikh VN, Gancharova OS, Nikiforova AI, Krasilshchikova MS, Shabalina IG, et al. Age-associated murine cardiac lesions are attenuated by the mitochondria-targeted antioxidant SkQ1. Histol Histopathol 2015;30:353-60.

89. Behringer EJ, Segal SS. Impact of aging on calcium signaling and membrane potential in endothelium of resistance arteries: a role for mitochondria. J Gerontol A Biol Sci Med Sci 2017;72:1627-37.

90. Bigelman E, Cohen L, Aharon-Hananel G, Levy R, Rozenbaum Z, et al. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease. PLoS One 2018;13:e0198196.

91. Kocas C, Yildiz A, Abaci O, Karaca OS, Firdin N, et al. Platelet-to-lymphocyte ratio predicts contrast-induced nephropathy in patients with non-ST-segment elevation acute coronary syndrome. Angiology 2015;66:964-8.

92. Yuan Y, Qiu H, Hu X, Luo T, Gao X, et al. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention. Clin Cardiol 2017;40:719-25.

93. Zhao K, Li Y, Gao Q. Role of red blood cell distribution width in predicting contrast induced nephropathy in patients with stable angina pectoris undergoing percutaneous coronary intervention. Int J Cardiol 2015;197:276-8.

94. Zorlu C, Koseoglu C. Comparison of the relationship between inflammatory markers and contrast-induced nephropathy in patients with acute coronary syndrome after coronary angiography. Angiology 2020;71:249-55.

95. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal Syndrome. J Am Coll Cardiol 2008;52:1527-39.

96. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305.

97. Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007;116:85-97.

98. Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol 2007;106:54-62.

99. Halliwell B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 2001;18:685-716.

100. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2018;100:1-19.

101. Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014;5:175.

102. Cobley J, Noble A, Bessell R, Guille M, Husi H. Reversible thiol oxidation inhibits the mitochondrial ATP synthase in xenopus laevis oocytes. Antioxidants 2020;9:215.

103. Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, et al. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019;26:101258.

104. Plotnikov EY, Zorov DB. Pros and cons of use of mitochondria-targeted antioxidants. Antioxidants 2019;8:316.

105. Liguori I, Russo G, Curcio F, Bulli G, Aran L, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018;13:757-72.

106. Abete P, Napoli C, Santoro G, Ferrara N, Tritto I, et al. Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol 1999;31:227-36.

107. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int 2005;68:14-22.

108. Caiazza A, Russo L, Sabbatini M, Russo D. Hemodynamic and tubular changes induced by contrast media. Biomed Res Int 2014;2014:578974.

109. Brinkley TE, Nicklas BJ, Kanaya AM, Satterfield S, Lakatta EG, et al. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults the health, aging, and body composition study. Hypertension 2009;53:846-52.

110. Zuliani G, Morieri ML, Volpato S, Vigna GB, Tch CB, et al. Determinants and clinical significance of plasma oxidized LDLs in older individuals. A 9 years follow-up study. Atherosclerosis 2013;226:201-7.

111. Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front Cardiovasc Med 2019;6:89.

112. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep 2017;19:42.

113. Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010;15:50-63.

114. Craige SM, Kant S, Reif M, Chen K, Pei Y, et al. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free Radic Biol Med 2015;89:1-7.

115. Liu XH, Zhang QY, Pan LL, Liu SY, Xu P, et al. NADPH oxidase 4 contributes to connective tissue growth factor expression through Smad3-dependent signaling pathway. Free Radic Biol Med 2016;94:174-84.

116. Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 2016;36:295-307.

117. Wu RF, Ma Z, Liu Z, Terada LS. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local ras activation. Mol Cell Biol 2010;30:3553-68.

118. Martin D, Li Y, Yang J, Wang G, Margariti A, et al. Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative stress through interaction with histone deacetylase 3. J Biol Chem 2014;289:30625-34.

119. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 2007;27:317-52.

120. Lemkens P, Nelissen J, Meens MJPMT, Janssen BJA, Schiffers PMH, et al. Dual neural peptidase/endothelin-converting enzyme inhibition improves endothelial function in mesenteric resistance arteries of young spontaneously hypertensive rats. J Hypertens 2012;30:1799-808.

121. Barhoumi T, Briet M, Kasal DA, Fraulob-Aquino JC, Idris-Khodja N, et al. Erythropoietin-induced hypertension and vascular injury in mice overexpressing human endothelin-1: exercise attenuated hypertension, oxidative stress, inflammation and immune response. J Hypertens 2014;32:784-94.

122. Uchmanowicz I. Oxidative stress, frailty and cardiovascular diseases: current evidence. Adv Exp Med Biol 2020;1216:65-77.

123. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, et al. Risk prediction of contrast-induced nephropathy. Am J Cardiol 2006;98:27K-36.

124. Liu ZZ, Schmerbach K, Lu Y, Perlewitz A, Nikitina T, et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol 2014;306:F864-72.

125. Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res Int 2013;2013:868321.

126. Briguori C, Visconti G, Focaccio A, Airoldi F, Valgimigli M, et al. Renal insufficiency after contrast media administration trial II (REMEDIAL II): renalguard system in high-risk patients for contrast-induced acute kidney injury. Circulation 2011;124:1260-9.

127. Goldenberg I, Matetzky S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 2005;172:1461-71.

128. Briguori C, Donnarumma E, Quintavalle C, Fiore D, Condorelli G. Contrast-induced acute kidney injury: potential new strategies. Curr Opin Nephrol Hypertens 2015;24:145-53.

129. Rezaee MA, Mohammadpour AH, Imenshahidi M, Mahmoudi M, Sankian M, et al. Protective effect of erythropoietin on myocardial apoptosis in rats exposed to carbon monoxide. Life Sci 2016;148:118-24.

130. Gibson KR, Neilson IL, Barrett F, Winterburn TJ, Sharma S, et al. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: Prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity. J Cardiovasc Pharmacol 2009;54:319-26.

131. Andreucci M, Faga T, Pisani A, Sabbatini M, Michael A. Acute kidney injury by radiographic contrast media: pathogenesis and prevention. Biomed Res Int 2014;2014:362725.

132. Kwasa EA, Vinayak S, Armstrong R. The role of inflammation in contrast-induced nephropathy. Br J Radiol 2014;87:20130738.

133. Toso A, Leoncini M, Maioli M, Tropeano F, Di Vincenzo E, et al. Relationship between inflammation and benefits of early high-dose rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS study. JACC Cardiovasc Interv 2014;7:1421-9.

134. Kaya A, Kaya Y, Topçu S, Günaydın ZY, Kurt M, et al. Neutrophil-to-lymphocyte ratio predicts contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention. Angiology 2014;65:51-6.

135. El Sayed AA, Haylor JL, El Nahas AM, Salzano S, Morcos SK. Haemodynamic effects of water-soluble contrast media on the isolated perfused rat kidney. Br J Radiol 1991;64:435-9.

136. Limbruno U, Caterina R. Vasomotor effects of iodinated contrast media: just side effects? Curr Vasc Pharmacol 2003;1:321-8.

137. Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 2013;2013:292953.

138. Okoye O, Ojogwu L, Unuigbe E, Oviasu E. Frequency and risk factors of contrast-induced nephropathy after contrast procedures in a Nigerian tertiary centre. West Afr J Med 2013;32:19-25.

139. Ambrose JA, Bhullar AS. Inflammation and thrombosis in coronary atherosclerosis: pathophysiologic mechanisms and clinical correlations. Eur Med J 2019;4:71-8.

140. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 2014;22:147-51.

141. Satilmis S, Karabulut A. Value of C-reactive protein/albumin ratio in predicting the development of contrast-induced nephropathy in patients with non-ST elevation myocardial infarction. Angiology 2020;71:366-71.

142. Buyuklu M, Kandemir F, Ozkaraca M, Set T, Bakirci EM, et al. Benefical effects of lycopene against contrast medium-induced oxidative stress, inflammation, autophagy, and apoptosis in rat kidney. Hum Exp Toxicol 2015;34:487-96.

143. Buyuklu M, Mehmet Kandemir F, Ozkaraca M, Set T, Murat Bakirci E, et al. Protective effect of curcumin against contrast induced nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci 2014;18:461-70.

144. Greaves DR, Channon KM. Inflammation and immune responses in atherosclerosis. Trends Immunol 2002;23:535-41.

145. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017;14:133-44.

146. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018;186:73-87.

147. Rajendran K, Devarajan N, Ganesan M, Ragunathan M. Obesity, inflammation and acute myocardial infarction - expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population. Thromb J 2012;10:13.

148. Senguttuvan NB, Subramanian A, Agarwal G, Mishra S, Bahl VK. Association of Cytokines IL6, IL10, IL18, TNFα in acute coronary syndrome. J Cardiol Vasc Med 2019;5:1-9.

149. Maekawa N, Wada H, Kanda T, Niwa T, Yamada Y, et al. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-α. J Am Coll Cardiol 2002;39:1229-35.

150. Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol 2008;180:6954-61.

151. Satoh M, Shimoda Y, Maesawa C, Akatsu T, Ishikawa Y, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 2006;109:226-34.

152. Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 2003;108:2905-10.

153. Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-α levels. Thromb Haemost 2004;92:419-24.

154. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005;365:1231-8.

155. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 2006;26:287-92.

156. Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, et al. Neutrophil gelatinase-associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc 2009;41:158-61.

157. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury. J Am Coll Cardiol 2011;57:1752-61.

158. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 2007;11:R84.

159. Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis 2006;47:439-44.

160. Baramova EN, Bajou K, Remacle A, L’hoir C, Krell HW, et al. Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett 1997;405:157-62.

161. Stringer KA, Bose SK, McCord JM. Antiinflammatory activity of tissue plasminogen activator in the carrageenan rat footpad model. Free Radic Biol Med 1997;22:985-8.

162. Yu LR, Sun J, Daniels JR, Cao Z, Schnackenberg L, et al. Aptamer-based proteomics identifies mortality-associated serum biomarkers in dialysis-dependent AKI patients. Kidney Int Reports 2018;3:1202-13.

163. Roelofs JJTH, Rouschop KMA, Leemans JC, Claessen N, de Boer AM, et al. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J Am Soc Nephrol 2006;17:131-40.

164. Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, et al. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 2006;281:2120-7.

165. Lin L, Wu C, Hu K. Tissue plasminogen activator activates NF-κB through a pathway involving annexin A2/CD11b and integrin-linked kinase. J Am Soc Nephrol 2012;23:1329-38.

166. Lin L, Jin Y, Mars WM, Reeves WB, Hu K. Myeloid-derived tissue-type plasminogen activator promotes macrophage motility through FAK, Rac1, and NF-κB pathways. Am J Pathol 2014;184:2757-67.

167. Ferguson-Smith AC, Chen YF, Newman MS, May LT, Sehgal PB, et al. Regional localization of the interferon- β2 B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics 1988;2:203-8.

168. Ling W, Zhaohui N, Ben H, Leyi G, Jianping L, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron - Clin Pract 2008;108:c176-81.

169. Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 2008;19:1106-15.

170. Chen J, Hartono JR, John R, Bennett M, Zhou XJ, et al. Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4. Kidney Int 2011;80:504-15.

171. Alladina JW, Levy SD, Hibbert KA, Januzzi JL, Harris RS, et al. Plasma concentrations of soluble suppression of tumorigenicity-2 and interleukin-6 are predictive of successful liberation from mechanical ventilation in patients with the acute respiratory distress syndrome. Crit Care Med 2016;44:1735-43.

172. Nogare AL, Dalpiaz T, Veronese FJ, Gonçalves LF, Manfro RC. Noninvasive analyses of kidney injury molecule-1 messenger RNA in kidney transplant recipients with graft dysfunction. Transplant Proc 2012;44:2297-9.

173. Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? Transl Res 2012;159:277-89.

174. Soto K, Coelho S, Rodrigues B, Martins H, Frade F, et al. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol 2010;5:1745-54.

175. Marenzi G. Can contrast-induced nephropathy after percutaneous coronary intervention be accurately predicted with a risk score? Nat Clin Pract Cardiovasc Med 2005;2:80-1.

176. Tublin ME, Murphy ME, Tessler FN. Current concepts in contrast media-induced nephropathy. Am J Roentgenol 1998;171:933-9.

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/