REFERENCES
1. Kontopodis N, Metaxa E, Papaharilaou Y, Tavlas E, Tsetis D, et al. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular 2015;23:65-77.
2. Emmott A, Garcia J, Chung J, Lachapelle K, El-Hamamsy I, et al. Biomechanics of the Ascending Thoracic Aorta: A Clinical Perspective on Engineering Data. Can J Cardiol 2016;32:35-47.
3. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873-926.
4. Avanzini A, Battini D, Bagozzi L, Bisleri G. Biomechanical evaluation of ascending aortic aneurysms. Biomed Res Int 2014;2014:820385.
5. Trabelsi O, Davis FM, Rodriguez-Matas JF, Duprey A, Avril S. Patient specific stress and rupture analysis of ascending thoracic aneurysms. J Biomech 2015;48:1836-43.
6. Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol 2014;30:577-89.
7. Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 1992;263:C389-96.
8. Sokolis DP. Passive mechanical properties and structure of the aorta: segmental analysis. Acta Physiol (Oxf) 2007;190:277-89.
9. Iliopoulos DC, Deveja RP, Kritharis EP, Perrea D, Sionis GD, et al. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med Eng Phys 2009;31:1-9.
10. Sokolis DP, Kritharis EP, Iliopoulos DC. Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms. Med Biol Eng Comput 2012;50:1227-37.
11. Khanafer K, Duprey A, Zainal M, Schlicht M, Williams D, et al. Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J Thorac Cardiovasc Surg 2011;142:682-6.
12. Sassani SG, Tsangaris S, Sokolis DP. Layer-and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. J Biomech 2015;48:3757-65.
13. Guinea GV, Atienza JM, Rojo FJ, García-Herrera CM, Yiqun L, et al. Factors influencing the mechanical behaviour of healthy human descending thoracic aorta. Physiol Meas 2010;31:1553-65.
14. Haskett D, Johnson G, Zhou A, Utzinger U, Vande Geest J. Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 2010;9:725-36.
15. Geest J, Sacks MS, Vorp D. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 2006;39:1324-34.
16. Zemánek M, Burša J, Děták M. Biaxial tension tests with soft tissues of arterial wall. Eng Mechanics 2009;16:3-11.
17. Azadani AN, Chitsaz S, Matthews PB, Jaussaud N, Leung J, et al. Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann Thorac Surg 2012;93:87-94.
18. Bellini C, Ferruzzi J, Roccabianca S, Di Martino ES, Humphrey JD. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 2014;42:488-502.
19. Alreshidan M, Shahmansouri N, Chung J, Lash V, Emmott A, et al. Obtaining the biomechanical behavior of ascending aortic aneurysm via the use of novel speckle tracking echocardiography. J Thorac Cardiovasc Surg 2017;153:781-8.
20. Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF. Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc Eng 2006:6123-31.
21. Waldman S, Sacks MS, Lee J. Boundary conditions during biaxial testing of planar connective tissues Part II Fiber orientation. J Mater Sci Mater Med 2002;21:1215-21.
22. Mohan D, Melvin J. Failure properties of passive human aortic tissue. II-Biaxial tension tests. J Biomech 1983;16:31-44.
23. Romo A, Badel P, Duprey A, Favre JP, Avril S. In vitro analysis of localized aneurysm rupture. J Biomech 2014;47:607-16.
24. Kim JH, Avril S, Duprey A, Favre JP. Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique. Biomech Model Mechanobiol 2012;11:841-53.
25. Labrosse MR, Beller CJ, Mesana T, Veinot JP. Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J Biomech 2009;42:996-1004.
26. Labrosse MR, Gerson ER, Veinot JP, Beller CJ. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J Mech Behav Biomed 2013;17:44-55.
27. Courtial EJ, Orkisz M, Douek PC, Huet L, Fulchiron R. Identifying hyper-viscoelastic model parameters from an inflation-extension test and ultrasound images. Exp Mech 2015;55:1353-66.
28. Horný L, Netušil M, Voňavková T. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol 2014;13:783-99.
29. Wang R, Gleason RL Jr. A mechanical analysis of conduit arteries accounting for longitudinal residual strains. Ann Biomed Eng 2010;38:1377-87.
30. Chaudhry HR, Bukiet B, Davis A, Ritter AB, Findley T. Residual stresses in oscillating thoracic arteries reduce circumferential stresses and stress gradients. J Biomech 1997;30:57-62.
31. Chuong CJ, Fung YC. Three-dimensional stress distribution in arteries. J Biomech Eng 1983;105:268-74.
33. Fung YC. What are the residual stresses doing in our blood vessels? Ann Biomed Eng 1991;19:237-49.
35. Zheng X, Ren J. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. J Theor Biol 2016;393:118-26.
36. Cardamone L, Valentín A, Eberth JF, Humphrey JD. Origin of axial prestretch and residual stress in arteries. Biomech Model Mechanobiol 2009;8:431-46.
37. Sokolis DP, Savva GD, Papadodima SA, Kourkoulis SK. Regional distribution of circumferential residual strains in the human aorta according to age and gender. J Mech Behav Biomed Mater 2017;67:87-100.
39. Sokolis DP. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta. J Mech Behav Biomed Mater 2015;46:229-43.
40. Sokolis DP, Bompas A, Papadodima S, Kourkoulis SK. Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender. J Biomech Eng 2019; doi: 10.1115/1.4043877.
41. Hemmasizadeh A, Autieri M, Darvish K. Multilayer material properties of aorta determined from nanoindentation tests. J Mech Behav Biomed 2012;15:199-207.
42. Manopoulos C. Identification of regional/layer differences in failure properties and thickness as important biomechanical factors responsible for the initiation of aortic dissections. J Biomech 2018;80:102-10.
43. Marino M, Vairo G. Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues. Comput Method Biomec 2013;14:73-102.
44. Brüel A, Ortoft G, Oxlund H. Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats. Atherosclerosis 1998;140:135-45.
45. Akhtar R, Schwarzer N, Sherratt MJ, Watson RE, Graham HK, et al. Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J Mater Res 2009;24:638-46.
46. Taghizadeh H, Tafazzoli-Shadpour M, Shadmehr MB, Fatouraee N. Evaluation of biaxial mechanical properties of aortic media based on the lamellar microstructure. Materials (Basel) 2015;8:302-16.
47. Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ. Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface 2015;12:20150188.
48. Iliopoulos DC, Kritharis EP, Giagini AT, Papadodima SA, Sokolis DP. Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J Thorac Cardiov Sur 2009;137:101-9.
49. Sokolis DP, Kritharis EP, Giagini AT, Lampropoulos KM, Papadodima SA, et al. Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodelling. Comput Method Biomec 2012;15:231-48.
50. Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 2011;9:1275-86.
51. Maceri F, Marino M, Vairo G. Age-dependent arterial mechanics via a multiscale elastic approach. Int J Numer Meth Eng 2013;14:141-51.
52. Carallo C, Irace C, Pujia A, De Franceschi MS, Crescenzo A, et al. Evaluation of common carotid hemodynamic forces. Relations with wall thickening. Hypertension 1999;34:217-21.
53. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 2011;57:1511-22.
54. García-Herrera CM, Atienza JM, Rojo FJ, Claes E, Guinea GV, et al. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med Biol Eng Comput 2012;50:559-66.
55. Morrison TM, Choi G, Zarins CK, Taylor CA. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J Vasc Surg 2009;49:1029-36.
56. Deveja RP, Iliopoulos DC, Kritharis EP, Angouras DC, Sfyris D, et al. Effect of aneurysm and bicuspid aortic valve on layer-specific ascending aorta mechanics. Ann Thorac Surg 2018;106:1692-701.
57. Iliopoulos DC, Kritharis EP, Boussias S, Demis A, Iliopoulos CD, et al. Biomechanical properties and histological structure of sinus of Valsalva aneurysms in relation to age and region. J Biomech 2013;46:931-940.
58. Tracy RE, Eigenbrodt ML. Coronary artery circumferential stress: departure from Laplace expectations with aging. ScientificWorldJournal 2009;9:946-60.
59. Taylor CA, Steinman DA. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: sixth international bio-fluid mechanics symposium and workshop, March 28-30, 2008 Pasadena, California. Ann Biomed Eng 2010;38:1188-203.
60. Cebral JR, Duan X, Chung BJ, Putman C, Aziz K, et al. Wall mechanical properties and hemodynamics of unruptured intracranial aneurysms. AJNR Am J Neuroradiol 2015;36:1695-703.
61. Prado CM, Ramos SG, Elias J, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008;89:72-80.
62. Zaroff LI, Kreel I, Sobel HJ, Baronofsky ID. Multiple and infraductal coarctations of the aorta. Circulation 1959;20:910-7.
64. Khanafer KM, Bull JL, Upchurch GR, Berguer R. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann Vasc Surg 2007;21:67-74.
65. Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, et al. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 2010;38:1288-313.
67. London GM, Pannier B. Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant 2010;25:3815-23.
68. Tian L, Wang Z, Lakes RS, Chesler NC. Comparison of approaches to quantify arterial damping capacity from pressurization tests on mouse conduit arteries. J Biomech Eng 2013;135:54504.
69. Rosset E, Brunet C, Rieu R, Rolland P, Pellissier JF, et al. Viscoelastic properties of human arteries methodology and preliminary results. Surg Radiol Anat 1996;18:89-96.
70. Delgadillo JOV, Delorme S, Mora V, DiRaddo R, Hatzikiriakos SG. Effect of deformation rate on the mechanical properties of arteries. J Biomed Sci Engine 2010;3:124-37.
71. Cheng CP, Wilson NM, Hallett RL, Herfkens RJ, Taylor CA. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol 2006;17:979-87.
72. Klein AJ, Chen SJ, Messenger JC, Hansgen AR, Plomondon ME, et al. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter Cardiovasc Interv 2009;74:787-98.
73. Vos AW, Linsen MA, Marcus JT, van den Berg JC, Vos JA, et al. Carotid artery dynamics during head movements: a reason for concern with regard to carotid stenting? J Endovasc Ther 2003;10:862-9.
74. Choi G, Shin LK, Taylor CA, Cheng CP. In vivo deformation of the human abdominal aorta and common iliac arteries with hip and knee flexion: implications for the design of stent-grafts. J Endovasc Ther 2009;16:531-8.