REFERENCES
1. Park SH. Perioperative lung-protective ventilation strategy reduces postoperative pulmonary complications in patients undergoing thoracic and major abdominal surgery. Korean J Anesthesiol 2016;69:3-7.
2. Wang YC, Huang CH, Tu YK. Effects of Positive Airway Pressure and Mechanical Ventilation of the Lungs During Cardiopulmonary Bypass on Pulmonary Adverse Events After Cardiac Surgery: A Systematic Review and Meta-Analysis. J Cardiothorac Vasc Anesth 2018;32:748-59.
3. Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 1993;55:552-9.
4. Bignami E, Saglietti F, Di Lullo A. Mechanical ventilation management during cardiothoracic surgery: an open challenge. Ann Transl Med 2018;6:380.
5. Ferrando C, Soro M, Belda FJ. Protection strategies during cardiopulmonary bypass: ventilation, anesthetics and oxygen. Curr Opin Anaesthesiol 2015;28:73-80.
6. Huffmyer JL, Groves DS. Pulmonary complications of cardiopulmonary bypass. Best Pract Res Clin Anaesthesiol 2015;29:163-75.
7. Szerafin T, Niederpold T, Mangold A, Hoetzenecker K, Hacker S, et al. Secretion of soluble ST2 - possible explanation for systemic immunosuppression after heart surgery. Thorac Cardiovasc Surg 2009;57:25-29.
8. Chi D, Chen C, Shi Y, Wang W, Ma Y, et al. Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2017;96:e6454.
9. Beer L, Szerafin T, Mitterbauer A, Debreceni T, Maros T, et al. Low tidal volume ventilation during cardiopulmonary bypass reduces postoperative chemokine serum concentrations. Thorac Cardiovasc Surg 2014;62:677-82.
10. Beer L, Warszawska JM, Schenk P, Debreceni T, Dworschak M, et al. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation. J Surg Res 2015;195:294-302.
11. Toikkanen V, Rinne T, Nieminen R, Moilanen E, Laurikka J, et al. The Impact of Lung Ventilation on Some Cytokines after Coronary Artery Bypass Grafting. Scand J Surg 2017;106:87-93.
12. Gaudriot B, Uhel F, Gregoire M, Gacouin A, Biedermann S, et al. Immune Dysfunction After Cardiac Surgery with Cardiopulmonary Bypass: Beneficial Effects of Maintaining Mechanical Ventilation. Shock (Augusta, Ga) 2015;44:228-33.
13. Bechtel A, Huffmyer J. Anesthetic Management for Cardiopulmonary Bypass: Update for 2014. Semin Cardiothorac Vasc Anesth 2014;18:101-16.
14. Young RW. Prevention of lung injury in cardiac surgery: a review. J Extra Corpor Technol 2014;46:130-41.
15. Lellouche F, Delorme M, Bussieres J, Ouattara A. Perioperative ventilatory strategies in cardiac surgery. Best Pract Res Clin Anaesthesiol 2015;29:381-95.
16. Bignami E, Guarnieri M, Saglietti F, Belletti A, Trumello C, et al. Mechanical Ventilation During Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2016;30:1668-75.
17. Asimakopoulos G, Taylor KM, Smith PL, Ratnatunga CP. Prevalence of acute respiratory distress syndrome after cardiac surgery. J Thorac Cardiov Sur 1999;117:620-1.
18. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest 2002;121:1269-77.
19. Messent M, Sullivan K, Keogh B, Morgan C, Evans T. Adult respiratory distress syndrome following cardiopulmonary bypass: incidence and prediction. Anaesthesia 1992;47:267-8.
20. Wynne R, Botti M. Postoperative pulmonary dysfunction in adults after cardiac surgery with cardiopulmonary bypass: clinical significance and implications for practice. Am J Crit Care 2004;13:384-93.
21. Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung dysfunction following cardiopulmonary bypass. J Cardiac Surg 2010;25:47-55.
22. Aguirre VJ, Sinha P, Zimmet A, Lee GA, Kwa L, et al. Phrenic nerve injury during cardiac surgery: mechanisms, management and prevention. Heart Lung Circ 2013;22:895-902.
23. Boldt J, King D, Scheid H, Hempelmann G. Lung management during cardiopulmonary bypass: influence on extravascular lung water. J Cardiothorac Anesth 1990;4:73-9.
24. Milot J, Perron J, Lacasse Y, Létourneau L, Cartier PC, et al. Incidence and predictors of ARDS after cardiac surgery. Chest 2001;119:884-8.
25. Bailey ML, Richter SM, Mullany DV, Tesar PJ, Fraser JF. Risk factors and survival in patients with respiratory failure after cardiac operations. Ann Thorac Surg 2011;92:1573-9.
26. Filsoufi F, Rahmanian PB, Castillo JG, Chikwe J, Adams DH. Predictors and early and late outcomes of respiratory failure in contemporary cardiac surgery. Chest 2008;133:713-21.
27. Hedenstierna G, Strandberg A, Brismar B, Lundquist H, Svensson L, et al. Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiology 1985;62:247-54.
28. Hedenstierna G, Edmark L. Effects of anesthesia on the respiratory system. Best Pract Res Clin Anaesthesiol 2015;29:273-84.
29. Berrizbeitia LD, Tessler S, Jacobowitz IJ, Kaplan P, Cunningham JN. Effect of sternotomy and coronary bypass surgery on postoperative pulmonary mechanics: comparison of internal mammary and saphenous vein bypass grafts. Chest 1989;96:873-6.
30. Chetta A, Bobbio A, Aiello M, Del Donno M, Castagnaro A, et al. Changes in lung function and respiratory muscle strength after sternotomy vs. laparotomy in patients without ventilatory limitation. Eur Surg Res 2006;38:489-93.
31. Locke T, Griffiths T, Mould H, Gibson G. Rib cage mechanics after median sternotomy. Thorax 1990;45:465-8.
32. Barnas GM, Gilbert TB, Watson RJ, Sequeira AJ, Roitman K, et al. Respiratory mechanics in the open chest: effects of parietal pleurae. Resp Physiol 1996;104:63-70.
33. Ozelami IV, Vieira F, Abrao J, Gastaldi A. Influence of pleural drain insertion in lung function of patients undergoing coronary artery bypass grafting. Rev Bras Anestesiol 2012;62:696-708.
34. Ragnarsdottir M, Kristjansdottir A, Ingvarsdóttir I, Hannesson P, Torfason B, et al. Short□term changes in pulmonary function and respiratory movements after cardiac surgery via median sternotomy. Scand Cardiovasc J 2004;38:46-52.
35. Kristjansdottir A, Ragnarsdottir M, Hannesson P, Beck HJ, Torfason B. Chest wall motion and pulmonary function are more diminished following cardiac surgery when the internal mammary artery retractor is used. Scand Cardiovasc J 2004;38:369-74.
36. Marco JD, Hahn JW, Barner HB. Topical cardiac hypothermia and phrenic nerve injury. Ann Thorac Surg 1977;23:235-7.
37. Fedullo AJ, Lerner RM, Gibson J, Shayne DS. Sonographic measurement of diaphragmatic motion after coronary artery bypass surgery. Chest 1992;102:1683-6.
38. Cohen AJ, Katz MG, Katz R, Mayerfeld D, Hauptman E, et al. Phrenic nerve injury after coronary artery grafting: is it always benign? Ann Thorac Surg 1997;64:148-53.
39. Chandler KW, Rozas CJ, Kory RC, Goldman AL. Bilateral diaphragmatic paralysis complicating local cardiac hypothermia during open heart surgery. Am J Med 1984;77:243-9.
40. Hagl C, Harringer W, Gohrbandt B, Haverich A. Site of pleural drain insertion and early postoperative pulmonary function following coronary artery bypass grafting with internal mammary artery. Chest 1999;115:757-61.
41. Vieira IBCO, Vieira FF, Abrão J, Gastaldi AC. Influence of pleural drain insertion in lung function of patients undergoing coronary artery bypass grafting. Rev Bras Anestesiol 2012;62:702-8.
42. Stover PE, Siegel LC, Parks R, Levin J, Body SC, et al. Variability in transfusion practice for coronary artery bypass surgery persists despite national consensus guidelines a 24-institution study. Anesthesiology: JASA 1998;88:327-33.
43. Salengros JC, Huybrechts I, Ducart A, Faraoni D, Marsala C, et al. Different anesthetic techniques associated with different incidences of chronic post-thoracotomy pain: low-dose remifentanil plus presurgical epidural analgesia is preferable to high-dose remifentanil with postsurgical epidural analgesia. J Cardiothorac Vasc Anesth 2010;24:608-16.
44. Kilic A, Whitman GJ. Blood transfusions in cardiac surgery: indications, risks, and conservation strategies. Ann Thorac Surg 2014;97:726-34.
45. Koch CG, Li L, Duncan AI, Mihaljevic T, Cosgrove DM, et al. Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med 2006;34:1608-16.
46. Galas FR, Almeida JP, Fukushima JT, Osawa EA, Nakamura RE, et al. Blood transfusion in cardiac surgery is a risk factor for increased hospital length of stay in adult patients. J Cardiothorac Surg 2013;8:54.
47. Vlaar AP, Hofstra JJ, Determann RM, Veelo DP, Paulus F, et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood 2011;117:4218-25.
48. de Haan J, Boonstra PW, Monnink SH, Ebels T, van Oeveren W. Retransfusion of suctioned blood during cardiopulmonary bypass impairs hemostasis. Ann Thorac Surg 1995;59:901-7.
49. Westerberg M, Bengtsson A, Jeppsson A. Coronary surgery without cardiotomy suction and autotransfusion reduces the postoperative systemic inflammatory response. Ann Thorac Surg 2004;78:54-9.
50. Damgaard S, Nielsen CH, Andersen LW, Bendtzen K, Tvede M, et al. Cell saver for on-pump coronary operations reduces systemic inflammatory markers: a randomized trial. Ann Thorac Surg 2010;89:1511-7.
51. Allen SJ, McBride WT, McMurray TJ, Phillips AS, Penugonda SP, et al. Cell salvage alters the systemic inflammatory response after off-pump coronary artery bypass grafting surgery. Ann Thorac Surg 2007;83:578-85.
52. Bronicki RA, Hall M. Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatric Crit Care Med 2016;17:S272-8.
53. Serraf A, Robotin M, Bonnet N, Détruit H, Baudet B, et al. Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass. J Thorac Cardiov Sur 1997;114:1061-9.
54. Royston D. The inflammatory response and extracorporeal circulation. J Cardiothor Vasc An 1997;11:341-54.
55. DeFoe GR, Ross CS, Olmstead EM, Surgenor SD, Fillinger MP, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann Thorac Surg 2001;71:769-76.
56. Griese M, Wilnhammer C, Jansen S, Rinker C. Cardiopulmonary bypass reduces pulmonary surfactant activity in infants. J Thorac Cardiov Sur 1999;118:237-44.
57. Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol 1999;277:L667-83.
59. Nicholas TE, Power JH, Barr HA. The pulmonary consequences of a deep breath. Resp Physiol 1982;49:315-24.
60. Govender M, Bihari S, Bersten AD, De Pasquale CG, Lawrence MD, et al. Surfactant and lung function following cardiac surgery. Heart Lung 2019;48:55-60.
61. Loeckinger A, Kleinsasser A, Lindner KH, Margreiter J, Keller C, et al. Continuous positive airway pressure at 10 cm H2O during cardiopulmonary bypass improves postoperative gas exchange. Anesth Analg 2000;91:522-7.
62. Magnusson L, Zemgulis V, Tenling A, Wernlund J, Tyden H, et al. Use of a Vital Capacity Maneuver to Prevent Atelectasis after Cardiopulmonary Bypass An Experimental Study. Anesthesiology: JASA 1998;88:134-42.
63. Schlensak C, Doenst T, Preußer S, Wunderlich M, Kleinschmidt M, et al. Bronchial artery perfusion during cardiopulmonary bypass does not prevent ischemia of the lung in piglets: assessment of bronchial artery blood flow with fluorescent microspheres. Eur J Cardiothorac Surg 2001;19:326-32.
64. Gasparovic H, Plestina S, Sutlic Z, Husedzinovic I, Coric V, et al. Pulmonary lactate release following cardiopulmonary bypass. Eur J Cardiothorac Surg 2007;32:882-7.
65. Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxid Med Cell Longev 2015;2015:590987.
66. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, et al. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 2012;16:123-32.
67. Maltesen R, Buggeskov K, Andersen C, Plovsing R, Wimmer R, et al. Lung Protection Strategies during Cardiopulmonary Bypass Affect the Composition of Bronchoalveolar Fluid and Lung Tissue in Cardiac Surgery Patients. Metabolites 2018;8:54.
68. Yang Z, Zingarelli B, Szabó C. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 2000;101:1019-26.
69. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008;29:617-25.
70. Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med 2006;34:2658-65.
71. Young RW. Hyperoxia: a review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol 2012;44:241.
72. Heinrichs J, Lodewyks C, Neilson C, Abou-Setta A, Grocott HP. The impact of hyperoxia on outcomes after cardiac surgery: a systematic review and narrative synthesis. Can J Anesth/J Can Anesth 2018;65:923-35.
73. Spoelstra□de Man A, Smit B, Oudemans□van Straaten H, Smulders Y. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia 2015;70:1307-19.
74. Berry C, Butler P, Myles P. Lung management during cardiopulmonary bypass: is continuous positive airways pressure beneficial? Brit J Anaesth 1993;71:864-8.
75. Stanley TH, Liu WS, Gentry S. Effects of ventilatory techniques during cardiopulmonary bypass on post-bypass and postoperative pulmonary compliance and shunt. Anesthesiology 1977;46:391-5.
76. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012;122:2731-40.
77. Fuller BM, Mohr NM, Drewry AM, Carpenter CR. Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Critical Care 2013;17:R11.
78. Neto AS, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. Jama 2012;308:1651-9.
79. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med 2015;43:2155-163.
80. Zupancich E, Paparella D, Turani F, Munch C, Rossi A, et al. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiov Sur 2005;130:378-83.
81. Ng CS, Arifi AA, Wan S, Ho AM, Wan IY, et al. Ventilation during cardiopulmonary bypass: impact on cytokine response and cardiopulmonary function. Ann Thorac Surg 2008;85:154-62.
82. Beer L, Warszawska JM, Schenk P, Debreceni T, Dworschak M, et al. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation. J Surg Res 2015;195:294-302.
83. Network ARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8.
84. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact Cardiov Thor Sur 2008;7:14-7.
85. Davoudi M, Farhanchi A, Moradi A, Bakhshaei MH, Safarpour G. The effect of low tidal volume ventilation during cardiopulmonary bypass on postoperative pulmonary function. J Tehran Heart Cent 2010;5:128-31.
86. Gagnon J, Laporta D, Béïque F, Langlois Y, Morin JF. Clinical relevance of ventilation during cardiopulmonary bypass in the prevention of postoperative lung dysfunction. Perfusion 2010;25:205-10.
87. Beer L, Szerafin T, Mitterbauer A, Debreceni T, Maros T, et al. Continued mechanical ventilation during coronary artery bypass graft operation attenuates the systemic immune response. Eur J Cardiothorac Surg 2012;44:282-7.
88. Beer L, Szerafin T, Mitterbauer A, Debreceni T, Maros T, et al. Low tidal volume ventilation during cardiopulmonary bypass reduces postoperative chemokine serum concentrations. Thorac Cardiovasc Surg 2014;62:677-82.
89. Naseer M, Siddiqi R, Hussain A, Tehniat I, Bashir I. Effects of low volume ventilation during cardiopulmonary bypass on postoperative pulmonary outcome after coronary artery bypass grafting. Pakistan Armed Forc Med J 2017;67:237-41.
90. Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993;21:131-43.
91. Pelosi P, Negrini D. Extracellular matrix and mechanical ventilation in healthy lungs: back to baro/volotrauma? Curr Opin Crit Care 2008;14:16-21.
92. Spieth P, Bluth T, Gama MDA, Bacelis A, Goetz A, et al. Mechanotransduction in the lungs. Minerva anestesiologica 2014;80:933-41.
93. Tonetti T, Vasques F, Rapetti F, Maiolo G, Collino F, et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med 2017;5:286.
94. Deffebach M. Lung mechanical effects on the bronchial circulation. Eur Respir J Suppl 1990;12:586s-90s.
95. da Costa F, Regina C, Malbouisson S, Marcelo L, Benicio A, et al. Lung perfusion and ventilation during cardiopulmonary bypass reduces early structural damage to pulmonary parenchyma. Anesth Analg 2016;122:943-52.
96. Santini F, Onorati F, Telesca M, Patelli F, Berton G, et al. Pulsatile pulmonary perfusion with oxygenated blood ameliorates pulmonary hemodynamic and respiratory indices in low-risk coronary artery bypass patients. Eur J Cardiothorac Surg 2011;40:794-803.
97. Buggeskov KB, Sundskard MM, Jonassen T, Andersen LW, Secher NH, et al. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD: a randomised clinical trial. BMJ Open Respirat Res 2016;3:e000146.