REFERENCES

1. Lu N, Zhu JX, Yang PX, Tan XR. Models for improved diagnosis of left ventricular hypertrophy based on conventional electrocardiographic criteria. BMC Cardiovasc Disord 2017;17:217.

2. Kawai K, Sengoku H, Ishihara H, Akematsu T, Nanahoshi M, et al. Total clinical course and autopsy findings of left ventricular outflow tract obstruction due to sigmoid septum: histologically proven isolated basal septal hypertrophy. Intern Med 2017;56:2151-4.

3. Kubo T, Kitaoka H. Imaging of left ventricular hypertrophy: a practical utility for differential diagnosis and assessment of disease severity. Curr Cardiol Rep 2017;19:65.

4. Adhyapak SM, Menon PG, Rao Parachuri V. Improvements in left ventricular twist mechanics following myectomy for hypertrophic cardiomyopathy with mid-ventricular obstruction. Interact Cardiovasc Thorac Surg 2017;25:128-30.

5. Markus MR, Werner N, Schipf S, Siewert-Markus U, Bahls M, et al. Changes in body weight and composition are associated with changes in left ventricular geometry and function in the general population: SHIP (Study of Health in Pomerania). Circ Cardiovasc Imaging 2017;10:e005544.

6. Khutan H, Aggarwal S, Kajal KS, Garg R, Kaur R, et al. Study of carotid intimal medial thickness in essential hypertension with or without left ventricular hypertrophy. Ann Afr Med 2017;16:192-5.

7. Cansu GB, Yılmaz N, Yanıkoğlu A, Özdem S, Yıldırım AB, et al. Assessment of diastolic dysfunction, arterial stiffness, and carotid intima-media thickness in patients with acromegaly. Endocr Pract 2017;23:536-45.

8. Ciccone MM, Scicchitano P, Zito A, Agati L, Gesualdo M, et al. Correlation between coronary artery disease severity, left ventricular mass index and carotid intima media thickness, assessed by radio-frequency. Cardiovasc Ultrasound 2011;9:32.

9. Folsom AR, Yatsuya H, Psaty BM, Shahar E, Longstreth WT Jr. Carotid intima-media thickness, electrocardiographic left ventricular hypertrophy, and incidence of intracerebral hemorrhage. Stroke 2011;42:3075-9.

10. Pierdomenico SD, Mancini M, Cuccurullo C, Guglielmi MD, Pierdomenico AM, et al. Prediction of carotid plaques in hypertensive patients by risk factors, left ventricular hypertrophy, and epicardial adipose tissue thickness. Heart Vessels 2013;28:277-83.

11. Jobe M, Kane A, Jones JC, Pessinaba S, Nkum BC, et al. Electrocardiographic left ventricular hypertrophy among gambian diabetes mellitus patients. Ghana Med J 2015;49:19-24.

12. Rojek M, Rajzer M, Wojciechowska W, Gąsowski J, Pizoń T, et al. The relation between blood pressure components and left atrial volume in the context of left ventricular mass index. Medicine (Baltimore) 2017;96:e9459.

13. De Jong KA, Czeczor JK, Sithara S, McEwen K, Lopaschuk GD, et al. Obesity and type 2 diabetes have additive effects on left ventricular remodelling in normotensive patients-a cross sectional study. Cardiovasc Diabetol 2017;16:21.

14. Dörr M, Ittermann T, Aumann N, Obst A, Reffelmann T, et al. Subclinical hyperthyroidism is not associated with progression of cardiac mass and development of left ventricular hypertrophy in middle-aged and older subjects: results from a 5-year follow-up. Clin Endocrinol (Oxf) 2010;73:821-6.

15. Al-Daydamony MM, El-Tahlawi M. What is the effect of metabolic syndrome without hypertension on left ventricular hypertrophy? Echocardiography 2016;33:1284-9.

16. Patel SK, Wai B, Lang CC, Levin D, Palmer CNA, et al. Genetic variation in kruppel like factor 15 is associated with left ventricular hypertrophy in patients with type 2 diabetes: discovery and replication cohorts. Ebiomedicine 2017;18:171-8.

17. Sano M, Kamitsuji S, Kamatani N, Tabara Y, Kawaguchi T, et al. Genome-wide association study of absolute QRS voltage identifies common variants of TBX3 as genetic determinants of left ventricular mass in a healthy Japanese population. PLoS One 2016;11:e0155550.

18. Huber M, Lezius S, Reibis R, Treszl A, Kujawinska D, et al. A single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy. Int J Mol Sci 2015;16:17456-68.

19. Xu X, Hou X, Liang Y, Li F, Pang L, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem 2014;33:88-96.

20. Boon-Peng H, Mat Jusoh JA, Marshall CR, Majid F, Danuri N, et al. Rare copy number variants identified suggest the regulating pathways in hypertension-related left ventricular hypertrophy. PLoS One 2016;11:e0148755.

21. Zhu HY, Wang SW, Liu L, Li YH, Chen R, et al. A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet 2009;17:172-8.

22. Govindaraj P, Khan NA, Rani B, Rani DS, Selvaraj P, et al. Mitochondrial DNA variations associated with hypertrophic cardiomyopathy. Mitochondrion 2014;16:65-72.

23. Bates MG, Hollingsworth KG, Newman JH, Jakovljevic DG, Blamire AM, et al. Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers. Eur Heart J Cardiovasc Imaging 2013;14:650-8.

24. Sazonova M, Budnikov E, Khasanova Z, Sobenin I, Postnov A, et al. Studies of the human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome. Atherosclerosis 2009;204:184-90.

25. Sazonova MA, Ryzhkova AI, Sinyov VV, Galitsyna EV, Orekhova VA, et al. New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations. Vessel Plus 2017;1:182-91.

26. Sazonova MA, Postnov AIu, Orekhov AN, Sobenin IA. A new method of quantitative estimation of mutant allele in mitochondrial genome. Patol Fiziol Eksp Ter 2011;4:81-4.

27. Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, et al. Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. Biomed Res Int 2014;2014:292017.

28. Sazonova MA. Association of mitochondrial genome mutations with lipofibrous plaques in human aortic intima. Patol Fiziol Eksp Ter 2015;59:17-28.

29. Sazonova MA, Sinyov VV, Ryzhkova AI, Galitsyna EV, Khasanova ZB, et al. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis. Oxidative Medicine and Cellular Longevity 2017;2017:1-7.

30. Sazonova MA, Sinyov VV, Barinova VA, Ryzhkova AI, Zhelankin AV, et al. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. Biomed Res Int 2015;2015:825468.

31. Ryzhkova A, Sazonova M, Sinyov V, Galitsyna E, Barinova V, et al. Detection of threshold heteroplasmy level of mtDNA in lypofibrous plaques of human aortic intima. Atherosclerosis 2016;252:e80.

32. Sazonova MA, Amosenko FA, Kapranov NI, Kalinin VN. Molecular genetic analysis of TUB18 and TUB20 intragenic polymorphism and various mutations of the CFTR gene in the Moscow region. Genetika 1997;33:1303-7. (in Russian)

33. Amosenko FA, Sazonova MA, Kapranov NI, Trubnikova IS, Kalinin VN. Analysis of various polymorphic markers of the CFTR gene in cystic fibrosis patients and healthy donors from the Moscow region. Russ J Genet 1995;31:457-9.

34. Amosenko FA, Trubnikova IS, Zakhar’ev VM, Bannikov VM, Sazonova MA, et al. TUB9 polymorphism in the CFTR gene of cystic fibrosis patients, carriers, and healthy donors from the Moscow region. SSCP and restriction analyses. Genetika 1997;33:257-61. (in Russian)

35. Alderborn A, Kristofferson A, Hammerling U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 2000;10:1249-58.

36. Simou M, Kouskouni E, Vitoratos N, Economou E, Creatsas G. Polymorphisms of platelet glycoprotein receptors and cell adhesion molecules in fetuses with fetal growth restriction and their mothers as detected with pyrosequencing. In Vivo 2017;31:243-9.

37. Pu D, Pan R, Liu W, Xiao P. Quantitative analysis of single-nucleotide polymorphisms by pyrosequencing with di-base addition. Electrophoresis 2017;38:876-85.

38. Sazonova MA, Budnikov YY, Khazanova ZB, Postnov AY, Sobenin IA, et al. Direct quantitative assessment of mutant allele in mitochondrial genome in atherosclerotic lesion of human aorta. Atherosclerosis Suppl 2007;8:45-6.

39. Sazonova M, Andrianova I, Khasanova Z, Sobenin I, Postnov A. Quantitative mitochondrial genome mutation investigation and possible role of the somatic mutations in development of atherosclerotic lesion of human aorta. Atherosclerosis Suppl 2008;9:113.

40. IBM SPSS software. Available from: https://www.ibm.com/analytics/us/en/technology/spss. [Last accessed on 21 Feb 2019].

Vessel Plus
ISSN 2574-1209 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/